Single-Color Barcoding for Multiplexed Hydrogel Bead-Based Immunoassays.

ACS Appl Mater Interfaces

Chemistry and Physics of Interfaces, Department of Microsystems Engineering - IMTEK, University of Freiburg, 79110 Freiburg, Germany.

Published: June 2022

Current developments in precision medicine require the simultaneous detection of an increasing number of biomarkers in heterogeneous, complex solutions, such as blood samples. To meet this need, immunoassays on barcoded hydrogel beads have been proposed, although the encoding and decoding of these barcodes is usually complex and/or resource-intensive. Herein, an efficient method for the fabrication of barcoded, functionalized hydrogel beads is presented. The hydrogel beads are generated using droplet-based microfluidics in combination with photochemically induced C-H insertion reactions, allowing photo-crosslinking, (bio-) functionalization, and barcode integration to be performed in a single step. The generated functionalized beads carry single-color barcodes consisting of green-fluorescent particles of different sizes and concentrations, allowing simple and simultaneous readout with a standard plate reader. As a test example, the performance of barcoded hydrogel beads (3 × 3 matrix) functionalized with capture molecules of interest (e.g., antigens) is investigated for the detection of Lyme-disease-specific antibodies in patient sera. The described barcoding strategy for hydrogel beads does not interfere with the bioanalytical process and captivates by its simplicity and versatility, making it an attractive candidate for multiplex bioanalytical processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9185679PMC
http://dx.doi.org/10.1021/acsami.2c04361DOI Listing

Publication Analysis

Top Keywords

hydrogel beads
20
barcoded hydrogel
8
hydrogel
6
beads
6
single-color barcoding
4
barcoding multiplexed
4
multiplexed hydrogel
4
hydrogel bead-based
4
bead-based immunoassays
4
immunoassays current
4

Similar Publications

Hydrogels, three-dimensional polymeric networks capable of absorbing and retaining significant amounts of aqueous solution, offer a promising platform for controlled release of desired compounds. In this study, we explored the effects of urea delivery through galactoxyloglucan-sodium alginate hydrogels on the phenotypic and metabolic responses of , a vital oilseed and vegetable crop. The experiments were conducted with four treatments: control (without hydrogel beads and urea), direct urea supplementation (U), hydrogel beads with urea (HBWU), and hydrogel beads without urea (HBWOU).

View Article and Find Full Text PDF

To date, it has been regarded as one of the most challenging issues to construct novel adsorbents possessing excellent adsorption performance toward heavy metals including copper ions (Cu(II)). Especially, it is controversy about the structural characteristics of chitosan-based adsorbents adsorbed with Cu(II) ions, which could function as new adsorbents. In this study, we adopt a freeze-drying process to synthesize honeycomb-like chitosan hydrogel beads crosslinked with citric acid (cCHBs), further characterize the microstructures of cCHBs and eventually reveal the thermodynamics equations for the removal of target Cu(II).

View Article and Find Full Text PDF

Alginate Hydrogel Beads with a Leakproof Gold Shell for Ultrasound-Triggered Release.

Pharmaceutics

January 2025

Department of Biomedical Engineering, University of Minnesota, 7-105 Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455, USA.

Focused ultrasound has advantages as an external stimulus for drug delivery as it is non-invasive, has high precision and can penetrate deep into tissues. Here, we report a gold-plated alginate (ALG) hydrogel system that retains highly water-soluble small-molecule fluorescein for sharp off/on release after ultrasound exposure. The ALG is crosslinked into beads with calcium chloride and layered with a polycation to adjust the surface charge for the adsorption of catalytic platinum nanoparticles (Pt NPs).

View Article and Find Full Text PDF

Chronic wounds are a major health problem, affecting millions of people worldwide. Resistance to treatment is frequently observed, requiring an extension of the wound healing time, and improper care can lead to more problems in patients. Smart wound dressings that provide a controlled drug release can significantly improve the healing process.

View Article and Find Full Text PDF

Goldenberry and purple passion fruit contain bioactive compounds (BCs) that can prevent gastrointestinal cancers; hydrogel beads can protect and control their release in the gastrointestinal tract. This study aimed to develop an encapsulating material for fruit hydrogel beads (FHBs) to increase their bioaccessibility and to assess antiproliferative effects. A blend of goldenberry-purple passion fruit was encapsulated using ionic gelation and electrospraying.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!