Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Treatment of nontraditional source waters (e.g., produced water, municipal and industrial wastewaters, agricultural runoff) offers exciting opportunities to expand water and energy resources via water reuse and resource recovery. While conventional polymer membranes perform water/ion separations well, they do not provide solute-specific separation, a key component for these treatment opportunities. Herein, we discuss the selectivity limitations plaguing all conventional membranes, which include poor removal of small, neutral solutes and insufficient discrimination between ions of the same valence. Moreover, we present synthetic approaches for solute-tailored selectivity including the incorporation of single-digit nanopores and solute-selective ligands into membranes. Recent progress in these areas highlights the need for fundamental studies to rationally design membranes with selective moieties achieving desired separations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsmacrolett.0c00710 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!