We report the first simulations of nonsolvent-induced phase separation (NIPS) that predict membrane microstructures with graded asymmetric pore size distribution. In NIPS, a polymer solution film is immersed in a nonsolvent bath, enriching the film in nonsolvent, and leading to phase separation that forms a solid polymer-rich membrane matrix and polymer-poor membrane pores. We demonstrate how mass-transfer-induced spinodal decomposition, thermal fluctuations, and glass-transition dynamics-implemented with mobility contrast between the polymer-rich and polymer-poor phases-are essential to the formation of asymmetric membrane microstructures. Specifically, we show that the competition between the propagation of the phase-separation and glass-transition fronts determines the degree of pore-size asymmetry. We also explore the sensitivity of these microstructures to the initial film composition, and compare their formation in 2D and 3D.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsmacrolett.0c00609 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
University of California Riverside, Chemistry Department, Chemistry Department, 92521, Riverside, UNITED STATES OF AMERICA.
Although metal-organic frameworks are coordination-driven assemblies, the structural prediction and design using metal-ligand interactions can be unreliable due to other competing interactions. Leveraging non-coordination interactions to develop porous assemblies could enable new materials and applications. Here, we use a multi-module MOF system to explore important and pervasive impact of ligand-ligand interactions on metal-ligand as well as ligand-ligand co-assembly process.
View Article and Find Full Text PDFMater Horiz
January 2025
School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
Recent advances in interfacial solar steam generation have made direct solar desalination a promising approach for providing cost-effective and environmentally friendly clean water solutions. However, developing highly effective, salt-resistant solar absorbers for long-term desalination at high efficiencies and evaporation rates remains a significant challenge. We present a Janus hydrogel-based absorber featuring a surface modified with thermo-responsive hydroxypropyl cellulose (HPC) and a hydrogel matrix containing photothermal conversion units, MXene, specifically designed for long-term seawater desalination.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States.
Polymeric membranes with great processability are attractive for the H/CO separation required for hydrogen production from renewable biomass with carbon capture for utilization and sequestration. However, it remains elusive to engineer polymer architectures to obtain desired sub-3.3 Å ultramicropores to efficiently sieve H from CO.
View Article and Find Full Text PDFNanoscale
January 2025
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, Hangzhou 310027, China.
Homogeneous mixtures undergo phase separation to generate rich heterogeneous structures as well as enable complex physiological activity and delicate design of artificial materials. Beyond free space, the strong coupling between migrating components and spatial confinement plays a crucial role in determining the essential spatial compartment of phase separation, warranting further continuous exploration. Herein, we report the selective phase separation (SPS) behavior of polymers under a mobile two-dimensional (2D) confinement by graphene oxide (GO) sheets.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China.
The concurrent evolution of value-added benzimidazole compounds and hydrogen within the domain of chemical synthesis is of paramount importance. The utilization of photocatalysis enhances both the efficiency and environmental benignity of the synthetic process. However, it is profoundly challenging within a photocatalytic system to simultaneously augment the number of active sites and the internal transport rate of photogenerated charge carriers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!