Purpose: Artificial intelligence is part of our daily life and machine learning techniques offer possibilities unknown until now in medicine. This study aims to offer an evaluation of the performance of machine learning (ML) techniques, for predicting bacterial resistance in a urology department.

Methods: Data were retrieved from laboratory information system (LIS) concerning 239 patients with urolithiasis hospitalized in the urology department of a tertiary hospital over a 1-year period (2019): age, gender, Gram stain (positive, negative), bacterial species, sample type, antibiotics and antimicrobial susceptibility. In our experiments, we compared several classifiers following a tenfold cross-validation approach on 2 different versions of our dataset; the first contained only information of Gram stain, while the second had knowledge of bacterial species.

Results: The best results in the balanced dataset containing Gram stain, achieve a weighted average receiver operator curve (ROC) area of 0.768 and F-measure of 0.708, using a multinomial logistic regression model with a ridge estimator. The corresponding results of the balanced dataset, that contained bacterial species, achieve a weighted average ROC area of 0.874 and F-measure of 0.783, with a bagging classifier.

Conclusions: Artificial intelligence technology can be used for making predictions on antibiotic resistance patterns when knowing Gram staining with an accuracy of 77% and nearly 87% when identifying specific microorganisms. This knowledge can aid urologists prescribing the appropriate antibiotic 24-48 h before test results are known.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00345-022-04043-xDOI Listing

Publication Analysis

Top Keywords

machine learning
12
learning techniques
12
gram stain
12
artificial intelligence
8
bacterial species
8
dataset contained
8
balanced dataset
8
achieve weighted
8
weighted average
8
roc area
8

Similar Publications

Predicting phage-host interaction via hyperbolic Poincaré graph embedding and large-scale protein language technique.

iScience

January 2025

Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Northwest University, Xi'an 710069, China.

Bacteriophages (phages) are increasingly viewed as a promising alternative for the treatment of antibiotic-resistant bacterial infections. However, the diversity of host ranges complicates the identification of target phages. Existing computational tools often fail to accurately identify phages across different bacterial species.

View Article and Find Full Text PDF

Over the last decade, Hippo signaling has emerged as a major tumor-suppressing pathway. Its dysregulation is associated with abnormal expression of and -family genes. Recent works have highlighted the role of YAP1/TEAD activity in several cancers and its potential therapeutic implications.

View Article and Find Full Text PDF

Artificial intelligence-based framework for early detection of heart disease using enhanced multilayer perceptron.

Front Artif Intell

January 2025

Department of Computer Science and Artificial Intelligence, College of Computing and Information Technology, University of Bisha, Bisha, Saudi Arabia.

Cardiac disease refers to diseases that affect the heart such as coronary artery diseases, arrhythmia and heart defects and is amongst the most difficult health conditions known to humanity. According to the WHO, heart disease is the foremost cause of mortality worldwide, causing an estimated 17.8 million deaths every year it consumes a significant amount of time as well as effort to figure out what is causing this, especially for medical specialists and doctors.

View Article and Find Full Text PDF

Background: Chronic obstructive pulmonary disease (COPD) affects breathing, speech production, and coughing. We evaluated a machine learning analysis of speech for classifying the disease severity of COPD.

Methods: In this single centre study, non-consecutive COPD patients were prospectively recruited for comparing their speech characteristics during and after an acute COPD exacerbation.

View Article and Find Full Text PDF

The successful design and deployment of next-generation nuclear technologies heavily rely on thermodynamic data for relevant molten salt systems. However, the lack of accurate force fields and efficient methods has limited the quality of thermodynamic predictions from atomistic simulations. Here we propose an efficient free energy framework for computing chemical potentials, which is the central free energy quantity behind many thermodynamic properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!