Schottky diode is the fundamental building blocks for modern electronics and optoelectronics. Reducing the semiconductor layer thickness could shrink the vertical size of a Schottky diode, improving its speed and integration density. Here, we demonstrate a new approach to fabricate a Schottky diode with ultrashort physical length approaching atomic limit. By mechanically laminating prefabricated metal electrodes on both-sides of two-dimensional MoS, the intrinsic metal-semiconductor interfaces can be well retained. As a result, we demonstrate the thinnest Schottky diode with a length of 2.6 nm and decent rectification behavior. Furthermore, with a diode length smaller than the semiconductor depletion length, the carrier transport mechanisms are investigated and explained by thickness-dependent and temperature-dependent electrical measurements. Our study not only pushes the scaling limit of a Schottky diode but also provides a general double-sided electrodes integration approach for other ultrathin vertical devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.2c00922 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!