Enforcing balanced electron-hole injection into the emitter layer of quantum-dot light-emitting diodes (QLEDs) remains key to maximizing the quantum efficiency over a wide current density range. This was previously thought not possible for quantum dot (QD) emitters because of their very deep energy bands. Here, we show using Mesolight® blue-emitting CdZnSeS/ZnS QDs as a model that its valence levels are in fact considerably shallower than the corresponding band maximum of the bulk semiconductor, which makes the ideal double-type-I injection/confinement heterostructure accessible using a variety of polymer organic semiconductors as transport and injection layers. We demonstrate flat external quantum efficiency characteristics that indicate near perfect recombination within the QD layer over several decades of current density from the onset of device turn-on of about 10 μA cm, for both normal and inverted QLED architectures. We also demonstrate that these organic semiconductors do not chemically degrade the QDs, unlike the usual ZnMgO nanoparticles. However, these more efficient injection heterostructures expose a new vulnerability of the QDs to electrochemical degradation. The work here opens a clear path towards next-generation ultra-high-performance, all-solution-processed QLEDs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1mh00859e | DOI Listing |
Nanoscale Adv
December 2024
Institute of Science and Technology, TNU-University of Sciences Thai Nguyen Vietnam
This article studies the synthesis, as well as the structural, vibrational, and optical properties of Eu-doped ZnO quantum dots (QDs) and investigates the energy transfer mechanism from the ZnO host to Eu ions using Reisfeld's approximation. Eu-doped ZnO QDs at varying concentrations (0-7%) were successfully prepared using a wet chemical method. The successful doping of Eu ions into the ZnO host lattice, as well as the composition and valence states of the elements present in the sample, were confirmed through X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses.
View Article and Find Full Text PDFNanotechnology
December 2024
Huazhong University of Science and Technology School of Energy and Power Engineering, Clean Energy Building, Wuhan, 430074, CHINA.
Quantum dots (QDs) have shown great application potential in a variety of optoelectronic devices due to their unique optoelectronic properties, especially playing a key role in the development of quantum dot converted light-emitting diodes (QD-LEDs). Inorganic ligands, including metal chalcogenides, oxoanions, halides, pseudohalides, and metal cations, play crucial roles in the synthesis, stabilization, and functionalization of QDs. Compared to long-chain organic ligands, inorganic ligands are shorter and possess higher electron mobility, which facilitates their application in high-performance QD-LEDs.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea.
The limited operational lifetime of quantum-dot light-emitting diodes (QLEDs) poses a critical obstacle that must be addressed before their practical application. Specifically, cadmium-free InP-based QLEDs, which are environmentally benign, experience significant operational degradation due to challenges in charge-carrier confinement stemming from the composition of InP quantum dots (QDs). This study investigates the operational degradation of InP QLEDs and provides direct evidence of the degradation process.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Electrical and Computer Engineering, Inter-university Semiconductor Research Center, and SOFT Foundry Institute, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
Quantum-dot (QD) light-emitting diodes (QLEDs) are garnering significant attention owing to their superb optoelectrical properties, but the overinjection of electrons compared to holes into the emissive layer (EML) is still a critical obstacle to be resolved. Current approaches, such as inserting a charge-balancing interlayer and mixing p-type organic additives into the EML, face issues of process complexity and poor miscibility. In this work, we demonstrate efficient InP QLEDs by simply embedding NiO nanoparticles (NPs) into the EML which forms a homogeneous QD-metal oxide hybrid EML.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Institute of Optoelectronics Technology, Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Beijing 100044, China.
This work explores the carrier recombination dynamics of AC-driven quantum dot (QD) light-emitting diodes (AC-QLEDs) and proposes their application in the field of electric field contactless detection. Different sequences of green QD (GQD)/red QD (RQD) bilayer thin films as the emission layer of AC-QLEDs were fabricated via film transfer printing to ensure the complete morphology of each layer. AC-QLEDs with the emission layer as the sequence of GQD + RQD (GR-QLEDs) show a significantly enhanced carrier recombination efficiency due to its stable energy level structure, achieving the highest peak brightness ever recorded for vertically emitting brightness of 1648.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!