A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electrostatic Contribution to the Photo-Assisted Piezoresponse Force Microscopy by Photo-Induced Surface Charge. | LitMetric

Electrostatic Contribution to the Photo-Assisted Piezoresponse Force Microscopy by Photo-Induced Surface Charge.

Microsc Microanal

Mechanical Engineering Discipline, School of Engineering, Monash University, Bandar Sunway, Selangor 47500, Malaysia.

Published: May 2022

The surging interest in manipulating the polarization of piezo/ferroelectric materials by means of light has driven an increasing number of studies toward their light-polarization interaction. One way to investigate such interaction is by performing piezoresponse force microscopy (PFM) while/after the sample is exposed to light illumination. However, caution must be exercised when analyzing and interpreting the data, as demonstrated in this paper, because sizeable photo-response observed in the PFM amplitude image of the sample is shown to be caused by the electrostatic interaction between the photo-induced surface charge and tip. Through photo-assisted Kelvin probe force microscopy (KPFM), positive surface potential is found to be developed near the sample's surface under 405 nm light illumination, whose effects on the measured PFM signal is revealed by the comparative studies on its amplitude curves that are obtained using PFM spectroscopy mode with/without illumination. This work exemplifies the need for complementary use of KPFM, PFM imaging mode, and PFM spectroscopy mode in order to distinguish real behavior from artifacts.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S143192762200085XDOI Listing

Publication Analysis

Top Keywords

force microscopy
12
piezoresponse force
8
photo-induced surface
8
surface charge
8
light illumination
8
pfm spectroscopy
8
spectroscopy mode
8
pfm
6
electrostatic contribution
4
contribution photo-assisted
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!