The addition of Venetoclax (VEN) to Hypomethylating agents (HMAs) significantly improves the probability of complete remission and prolongs survival in patients with Acute Myeloid Leukemia (AML) when compared to HMA alone. However, the mutated clone composition may impact the probability of response and its duration. Here, we describe the molecular profile of a patient with AML rapidly evolved from a previous therapy-related-Chronic MyeloMonocytic Leukemia, who achieved safely complete remission after treatment with the VEN/Azacitidine combination, even in the presence of SARS-COVID-2 infection. The targeted NGS analysis showed that the VEN/AZA combination led to the eradication of the and mutated clone/s primarily associated with AML evolution, and subsequently, the , and mutated clone/s. This case also underlines the importance of the sequential use of targeted NGS for disease monitoring: the deep molecular remission achieved by this patient allowed to safely guide adjustments of drug dosage and treatment intervals in the presence of neutropenia, helping to rule out disease progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9083951PMC
http://dx.doi.org/10.4084/MJHID.2022.041DOI Listing

Publication Analysis

Top Keywords

acute myeloid
8
myeloid leukemia
8
complete remission
8
targeted ngs
8
mutated clone/s
8
venetoclax/azacitidine combination
4
combination targets
4
targets disease
4
disease clone
4
clone acute
4

Similar Publications

Introduction: Progressing myelodysplastic syndrome (MDS) into acute myeloid leukemia (AML) is an indication for hypomethylating therapy (HMA, 5-Azacytidine (AZA)) and a BCL2 inhibitor (Venetoclax, VEN) for intensive chemotherapy ineligible patients. Mouse models that engraft primary AML samples may further advance VEN + AZA resistance research.

Methods: We generated a set of transplantable murine PDX models from MDS/AML patients who developed resistance to VEN + AZA and compared the differences in hematopoiesis of the PDX models with primary bone marrow samples at the genetic level.

View Article and Find Full Text PDF

Background: may cause fatal infections in immunocompromised patients. This is the first case report of invasive infection at an academic-tertiary care center in Palestine.

Case Presentation: We report a 36-year-old woman who presented with fever and severe neutropenia and was found to have AML/Non M3.

View Article and Find Full Text PDF

Background: Dachaihu decoction (DCHD) is a common Chinese medicine formula against sepsis-induced acute lung injury (SALI). PANoptosis is a novel type of programmed cell death. Nevertheless, The mechanisms of DCHD against SALI via anti-PANoptosis remains unknown.

View Article and Find Full Text PDF

Predicting candidate biomarkers for COVID-19 associated with leukemia in children.

Am J Clin Exp Immunol

December 2024

Department of Internal Medicine, University of Michigan Ann Arbor, MI 48109, USA.

Since the COVID-19 pandemic, a significant number of pediatric leukemia patients have shown to have also contracted COVID-19 several weeks or months prior to the development of their cancer. Current research indicates the expression of MDA5, encoded by , is associated with increased immunity to COVID-19 in children. Children are also known to have a much lower risk of developing leukemia.

View Article and Find Full Text PDF

Umbilical cord blood transplantation (CBT) is accepted as an effective treatment for acute myeloid leukemia (AML), and reduced-intensity conditioning (RIC), rather than myeloablative conditioning (MAC) regimens allowed elderly patients to be treated safely. However, appropriate intensities of conditioning regimens are still unclear, especially for middle-aged patients. To compare outcomes after RIC and MAC regimens, we analyzed AML patients aged 16 years or older in the Japanese registry database, who underwent single cord unit CBT between 2010-2019.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!