We demonstrated here for the first time that the stereochemistry of polylactide (PLA) blocks affected the assembly behaviors of PS--PLA on chemical patterns. Two PS--PLA block copolymers, where the PLA block is either racemic (PDLLA) or left-handed (PLLA), were synthesized and directed to assemble on chemical patterns with a wide range of /. PS--PDLLA was stretched up to 70% on chemical patterns, while PS--PLLA was only stretched by 20%. The assembly behavior of PS--PDLLA was different from AB diblock copolymer, but similar to that of ABA triblock copolymer. The high stretchability might be attributed to the formation of stereocomplexes in PDLLA blocks. Compared to ABA triblock copolymers, stereocomplexed diblock copolymers have much faster assembly kinetics. This observation provides a new concept to achieve large process windows by the introduction of specific interactions, for example, H-bonding, supramolecular interaction, and sterecomplexation, between polymer chains.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsmacrolett.6b00011DOI Listing

Publication Analysis

Top Keywords

chemical patterns
16
aba triblock
8
stereochemistry directed
4
directed self-assembly
4
self-assembly polystyrene--lactide
4
polystyrene--lactide films
4
chemical
4
films chemical
4
patterns
4
patterns demonstrated
4

Similar Publications

Ultrasound-Activated Copper Matrix Nanosonosensitizer for Cuproptosis-Based Synergy Therapy.

ACS Appl Bio Mater

January 2025

State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.

Cuproptosis exhibits enormous application prospects in treatment. However, cuproptosis-based therapy is impeded by the limited intracellular copper ions, the nonspecific delivery, uncontrollable release, and chelation of endogenous overproduced glutathione (GSH). In this work, an ultrasound-triggered nanosonosensitizer (p-TiO-Cu(I)) was constructed for Cu(I) delivery, on-demand release, GSH consumption, and deeper tissue response.

View Article and Find Full Text PDF

Brazilian soils have distinctive characteristics to European and North American soils which are typically used to investigate pesticide fate. This study aimed to compare soil-water partition coefficient (K), reversibility of adsorption and degradation half-life (DT) of 5 pesticides covering a wide range of physico-chemical properties in contrasting Brazilian soils (Argissolo, Gleissolo, Latossolo and Neossolo) and a temperate (UK) alfisol soil, and to study their relationship with soil OM, clay and expandable clay content, CEC and pH. In addition, we used a novel laboratory test to evaluate sorption reversibility, the 3-Phase Assay (3PA).

View Article and Find Full Text PDF

Ru(II)-Based Multitopic Hosts for Fullerene Binding: Impact of the Anion in the Recognition Process.

Inorg Chem

January 2025

GIR MIOMeT, IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid E47011, Spain.

The development of multitopic hosts for fullerene recognition based on nonplanar corannulene (CH) structures presents challenges, primarily due to the requirement for synergistic interactions with multiple units of this polycyclic aromatic hydrocarbon. Moreover, increasing the number of corannulene groups in a single chemical structure while avoiding the cost of increasing flexibility has been scarcely explored. Herein, we report the synthesis of a family of multitopic Ru(II)-polypyridyl complexes bearing up to six units of corannulene arranged by pairs, offering a total of three molecular tweezers.

View Article and Find Full Text PDF

Quantum crystallography methods have been employed to investigate complex formation between nonsteroidal anti-inflammatory drugs (NSAIDs) and cyclooxygenase (COX) enzymes, with particular focus on the COX-1 and COX-2 isoforms. This study analyzed the electrostatic interaction energies of selected NSAIDs (flurbiprofen, ibuprofen, meloxicam and celecoxib) with the active sites of COX-1 and COX-2, revealing significant differences in binding profiles. Flurbiprofen exhibited the strongest interactions with both COX-1 and COX-2, indicating its potent binding affinity.

View Article and Find Full Text PDF

High Glucose Treatment Induces Nuclei Aggregation of Microvascular Endothelial Cells via the - Pathway.

Arterioscler Thromb Vasc Biol

January 2025

Research Center of Clinical Medicine, Affiliated Hospital, Nantong University, China. (X.W., D.L.).

Background: Hyperglycemia is a major contributor to endothelial dysfunction and blood vessel damage, leading to severe diabetic microvascular complications. Despite the growing body of research on the underlying mechanisms of endothelial cell (EC) dysfunction, the available drugs based on current knowledge fall short of effectively alleviating these complications. Therefore, our endeavor to explore novel insights into the cellular and molecular mechanisms of endothelial dysfunction is crucial for the field.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!