Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Here, we report the preparation and self-assembly of amphiphilic polyurethane phosphate ester (PUP) polymers with phospholipid-like structures. The polymers, designed to have a hydrophilic phosphate head and two amphiphilic PPG-IPDI-MPEG (PU) tails were synthesized via coupling and phosphorylation reactions in sequence. These amphiphilic polymers could self-assemble into various interesting nanostructures in aqueous solution, such as spherical, worm-like micelles, vesicles, and large compound vesicles, depending on the hydrophobic chain length of PU tails and the initial polymer concentrations. It was found that the morphology transition is not only caused by the unique molecular structure of amphiphilic polyurethanes, but also influenced by the additional hydrophilic phosphate groups incorporated, which disturb the force balance governing the aggregation structures. This research supplies a new clue for the fabrication of well-defined nanostructures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsmacrolett.5b00789 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!