Microplastics and parabens are considered to be a global contaminants, especially in the aquatic ecosystem. The interfacial interaction between four types of microplastics including polystyrene, polyethylene, polyethylene terephthalate, and polyvinyl chloride, and methylparaben were investigated in this study. The results showed that molecular layer dominates the adsorption, with the rate significantly affected by both internal diffusion and external diffusion. Among the four types, polystyrene and polyvinyl chloride showed the smallest and biggest adsorption capability, with the values were 0.656 and 1.269 mg g, respectively. For the adsorption capability, smaller particle size and higher pH value possessed positive effects. However, the existence of metal ions could inhibit the adsorption process, except for a weak promotion at low salinity. Physical adsorption effects, such as electrostatic interaction, hydrogen bond formation, and covalent bond formation, had been identified that dominated the adsorption. This finding could be served as a speculative foundation for the further study of the toxicity, migration, and ecological risk assessment of microplastics in aquatic ecosystem.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10653-022-01284-yDOI Listing

Publication Analysis

Top Keywords

aquatic ecosystem
8
polyvinyl chloride
8
adsorption capability
8
bond formation
8
adsorption
7
investigation interfacial
4
interfacial adsorption
4
microplastics
4
adsorption microplastics
4
microplastics methylparaben
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!