Biogenesis of a bacterial metabolosome for propanediol utilization.

Nat Commun

Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, United Kingdom.

Published: May 2022

Bacterial metabolosomes are a family of protein organelles in bacteria. Elucidating how thousands of proteins self-assemble to form functional metabolosomes is essential for understanding their significance in cellular metabolism and pathogenesis. Here we investigate the de novo biogenesis of propanediol-utilization (Pdu) metabolosomes and characterize the roles of the key constituents in generation and intracellular positioning of functional metabolosomes. Our results demonstrate that the Pdu metabolosome undertakes both "Shell first" and "Cargo first" assembly pathways, unlike the β-carboxysome structural analog which only involves the "Cargo first" strategy. Shell and cargo assemblies occur independently at the cell poles. The internal cargo core is formed through the ordered assembly of multiple enzyme complexes, and exhibits liquid-like properties within the metabolosome architecture. Our findings provide mechanistic insight into the molecular principles driving bacterial metabolosome assembly and expand our understanding of liquid-like organelle biogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9132943PMC
http://dx.doi.org/10.1038/s41467-022-30608-wDOI Listing

Publication Analysis

Top Keywords

bacterial metabolosome
8
functional metabolosomes
8
"cargo first"
8
biogenesis bacterial
4
metabolosome
4
metabolosome propanediol
4
propanediol utilization
4
utilization bacterial
4
metabolosomes
4
bacterial metabolosomes
4

Similar Publications

Carboxysomes: The next frontier in biotechnology and sustainable solutions.

Biotechnol Adv

December 2024

Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah 23955, Saudi Arabia. Electronic address:

Some bacteria possess microcompartments that function as protein-based organelles. Bacterial microcompartments (BMCs) sequester enzymes to optimize metabolic reactions. Several BMCs have been characterized to date, including carboxysomes and metabolosomes.

View Article and Find Full Text PDF

Electrochemical cofactor recycling of bacterial microcompartments.

Proc Natl Acad Sci U S A

December 2024

MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824.

Bacterial microcompartments (BMCs) are prokaryotic organelles that consist of a protein shell which sequesters metabolic reactions in its interior. While most of the substrates and products are relatively small and can permeate the shell, many of the encapsulated enzymes require cofactors that must be regenerated inside. We have analyzed the occurrence of an enzyme previously assigned as a cobalamin (vitamin B) reductase and, curiously, found it in many unrelated BMC types that do not employ B cofactors.

View Article and Find Full Text PDF
Article Synopsis
  • Prokaryotes utilize Bacterial Microcompartments (BMCs) to encapsulate metabolic pathways, enhancing enzyme activity for improved catalysis.
  • Sugar Phosphate Utilizing (SPU) BMCs, present in various environments from soils to hot springs, are characterized by their unique enzyme, deoxyribose 5-phosphate aldolase (DERA).
  • This study defines the key features of SPU BMCs, demonstrating the catalytic activity of DERA and its role as a signature enzyme, which could have significant implications for understanding their function and potential biotechnological uses.
View Article and Find Full Text PDF

Spatial organization of pathway enzymes has emerged as a promising tool to address several challenges in metabolic engineering, such as flux imbalances and off-target product formation. Bacterial microcompartments (MCPs) are a spatial organization strategy used natively by many bacteria to encapsulate metabolic pathways that produce toxic, volatile intermediates. Several recent studies have focused on engineering MCPs to encapsulate heterologous pathways of interest, but how this engineering affects MCP assembly and function is poorly understood.

View Article and Find Full Text PDF

Bacterial microcompartments (BMCs) are prokaryotic organelles that consist of a protein shell which sequesters metabolic reactions in its interior. While most of the substrates and products are relatively small and can permeate the shell, many of the encapsulated enzymes require cofactors that must be regenerated inside. We have analyzed the occurrence of an enzyme previously assigned as a cobalamin (vitamin B) reductase and, curiously, found it in many unrelated BMC types that do not employ B cofactors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!