During the COVID-19 pandemic, the use of chlorine-based disinfectants has surged due to their excellent performance and cost-effectiveness in intercepting the spread of the virus and bacteria in water and air. Many authorities have demanded strict chlorine dosage for disinfection to ensure sufficient chlorine residual for inactivating viruses and bacteria while not posing harmful effects to humans as well as the environment. Reliable chlorine sensing techniques have therefore become the keys to ensure a balance between chlorine disinfection efficiency and disinfection safety. Up to now, there is still a lack of comprehensive review that collates and appraises the recently available techniques from a practical point of view. In this work, we intend to present a detailed overview of the recent advances in monitoring chlorine in both dissolved and gaseous forms aiming to present valuable information in terms of method accuracy, sensitivity, stability, reliability, and applicability, which in turn guides future sensor development. Data on the analytical performance of different techniques and environmental impacts associated with the dominated chemical-based techniques are thus discussed. Finally, this study concludes with highlights of gaps in knowledge and trends for future chlorine sensing development. Due to the increasing use of chlorine in disinfection and chemical synthesis, we believe the information present in this review is a relevant and timely resource for the water treatment industry, healthcare sector, and environmental organizations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9124365 | PMC |
http://dx.doi.org/10.1016/j.scitotenv.2022.156193 | DOI Listing |
Nanomedicine (Lond)
January 2025
Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.
Photodynamic therapy (PDT) involves the activation of photosensitizers (PSs) by visible laser light at the target site to catalyze the production of reactive oxygen species, resulting in tumor cell death and blood vessel closure. The efficacy of PDT depends on the PSs, the amount of oxygen, and the intensity of the excitation laser. PSs have been extensively researched, and great efforts have been made to develop an ideal photosensitizer.
View Article and Find Full Text PDFJ Med Biochem
November 2024
Central South University, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Department 2 of Respiratory and Critical Medicine, Zhuzhou, China.
Background: To investigate the changes of b2-microglobulin and electrolyte in different stages of chronic obstructive pulmonary disease (COPD) and the value of evaluating prognosis.
Methods: A retrospective study was undertaken on 120 patients diagnosed with COPD and treated at our respiratory department between February 1, 2020, and January 31, 2023. These patients were classified into three groups based on the GOLD classification: mild (FEV1 > 81%), moderate (51% < FEV1 ≤ 80%), and severe (FEV1 ≤ 50%).
BMC Res Notes
January 2025
Laboratory of Health and Life Science, Graduate School of Health and Sports Science, Juntendo University, Inzai, 270-1695, Japan.
Objective: Dictyostelium differentiation-inducing factors 1 and 3 [DIF-1 (1) and DIF-3 (2), respectively], along with their derivatives, such as Ph-DIF-1 (3) and Bu-DIF-3 (4), demonstrate antibacterial activity in vitro against Gram-positive bacteria, including methicillin-sensitive Staphylococcus aureus (MSSA), methicillin-resistant S. aureus (MRSA), vancomycin-sensitive Enterococcus faecalis (VSE), and vancomycin-resistant Enterococcus faecium [VRE (VanA)]. This study investigates the therapeutic potential of DIF compounds against these Gram-positive bacteria.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA.
Discharge of wastewater containing nitrate (NO) disrupts aquatic ecosystems even at low concentrations. However, selective and rapid reduction of NO at low concentration to dinitrogen (N) is technically challenging. Here, we present an electrified membrane (EM) loaded with Sn pair-atom catalysts for highly efficient NO reduction to N in a single-pass electrofiltration.
View Article and Find Full Text PDFChemosphere
January 2025
Faculty of Engineering, Hokkaido University, N13W8, Sapporo, 060-8628, Japan. Electronic address:
Global concern regarding transformation products (TPs) derived from contaminants, including pesticides, in the environment and during water treatment has been growing markedly. In the present study, we investigated the anti-acetylcholinesterase (AChE) activity of an aqueous solution of the organophosphorus insecticide disulfoton, a toxicological endpoint for determining the acceptable daily intake of disulfoton, both in the presence and the absence of metabolism during chlorination. Disulfoton rapidly reacted with free chlorine and completely disappeared within 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!