Upon binding double-stranded DNA (dsDNA), cyclic GMP-AMP synthase (cGAS) is activated and initiates the cGAS-stimulator of IFN genes (STING)-type I interferon pathway. DEAD-box helicase 41 (DDX41) is a DEAD-box helicase, and mutations in DDX41 cause myelodysplastic syndromes (MDSs) and acute myeloid leukemia (AML). Here, we show that DDX41-knockout (KO) cells have reduced type I interferon production after DNA virus infection. Unexpectedly, activations of cGAS and STING are affected in DDX41 KO cells, suggesting that DDX41 functions upstream of cGAS. The recombinant DDX41 protein exhibits ATP-dependent DNA-unwinding activity and ATP-independent strand-annealing activity. The MDS/AML-derived mutant R525H has reduced unwinding activity but retains normal strand-annealing activity and stimulates greater cGAS dinucleotide-synthesis activity than wild-type DDX41. Overexpression of R525H in either DDX41-deficient or -proficient cells results in higher type I interferon production. Our results have led to the hypothesis that DDX41 utilizes its unwinding and annealing activities to regulate the homeostasis of dsDNA and single-stranded DNA (ssDNA), which, in turn, regulates cGAS-STING activation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9205463PMC
http://dx.doi.org/10.1016/j.celrep.2022.110856DOI Listing

Publication Analysis

Top Keywords

ddx41
8
cgas-sting activation
8
dna virus
8
virus infection
8
dead-box helicase
8
type interferon
8
interferon production
8
strand-annealing activity
8
activity
5
ddx41 required
4

Similar Publications

Article Synopsis
  • Adenoid cystic carcinomas (AdCC) of salivary gland origin are primarily defined by the presence of specific gene fusions, notably MYB::NFIB and MYBL1::NFIB, with sinonasal AdCC being particularly aggressive and lacking effective treatments.
  • Researchers conducted an extensive analysis of 88 sinonasal AdCC cases using various techniques like NGS and FISH to identify gene fusions and mutations, finding that the majority harbored canonical fusions while some had noncanonical ones, with a few tumors showing no fusions at all.
  • Mutational analysis revealed that about 68% of AdCCs tested (21 out of 31) had mutations in key oncogenes, highlighting potential areas for targeted
View Article and Find Full Text PDF

: Myeloid neoplasms encompass a diverse group of disorders. In this study, we aimed to analyze the clinical and genomic data of patients with myeloproliferative neoplasm (MPN), myelodysplastic neoplasm (MDS), and their overlapping conditions, such as MDS/MPN and aplastic anemia (AA), to help redefine the disease classification. : Clinico-genomic data of 1585 patients diagnosed with MPN ( = 715), MDS ( = 698), MDS/MPN ( = 78), and AA ( = 94) were collected.

View Article and Find Full Text PDF

Purpose Of Review: DDX41 mutations are the most common cause of germline predisposition to adult-onset myeloid neoplasms. The unique mutational landscape and clinical features indicate a distinct molecular pathogenesis, but the precise mechanism by which DDX41 mutations cause disease is poorly understood, owing to the multitude of DDX41 functions. In this review, we will update DDX41's known functions, present unique clinical features and treatment considerations, and summarize the current understanding of the molecular pathogenesis of the disease.

View Article and Find Full Text PDF

According to the 2016 World Health Organization classification, a germline DEAD-box helicase 41 gene () mutation with myeloid neoplasms has been newly classified. The clinical course of acute myeloid leukemia (AML) with a germline mutation has not yet been clarified. In the early phase, this condition is slowly progressive, the rate of remission induction is high, and the prognosis is good.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!