Electroactive Ultrafiltration Membrane for Simultaneous Removal of Antibiotic, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes from Wastewater Effluent.

Environ Sci Technol

CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China.

Published: November 2022

To combat the spread of antibiotic resistance into the environment, we should adequately manage wastewater effluent treatment to achieve simultaneous removal of antibiotics, antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs). Herein, we fabricate a multifunctional electroactive poly(vinylidene fluoride) ultrafiltration membrane (C/PVDF) by phase inversion on conductive carbon cloth. The membrane possesses not only excellent retention toward ARB and ARGs but also exhibits high oxidation capacity as an electrode. Notably, sulfamethoxazole degradation involving hydroxylation and hydrolysis by the anode membrane is predominant, and the degradation efficiency is up to 81.5% at +4 V. Both electro-filtration processes exhibit significant ARB inactivation, anode filtration is superior to cathode filtration. Moreover, the degradation of intracellular ARGs (iARGs) located in the genome is more efficient than those located in the plasmid, and these degradation efficiencies at -2 V are higher than +2 V. The degradation efficiencies of extracellular ARGs (eARGs) are opposite and are lower than iARGs. Compared with regular filtration, the normalized flux of electroactive ultrafiltration membrane is improved by 18.0% at -2 V, 15.9% at +2 V, and 30.4% at +4 V during treating wastewater effluent, confirming its antifouling properties and feasibility for practical application.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.2c00268DOI Listing

Publication Analysis

Top Keywords

ultrafiltration membrane
12
antibiotic resistance
12
wastewater effluent
12
electroactive ultrafiltration
8
simultaneous removal
8
antibiotic resistant
8
resistant bacteria
8
resistance genes
8
degradation efficiencies
8
antibiotic
6

Similar Publications

To prevent water scarcity, wastewater must be discharged to the surface or groundwater after being treated. Another method is to reuse wastewater in some areas after treatment and evaluate it as much as possible. In this study, it is aimed to recover and reuse the caustic (sodium hydroxide, NaOH) used in the recycling of plastic bottles from polyethylene terephthalate (PET) washing wastewater.

View Article and Find Full Text PDF

Hemodialysis and bioartificial kidney (BAK), which mimic both physical and biological functions, can significantly impact chronic kidney disease (CKD) patients. Here we report on Hollow fiber membranes (HFMs) with enhanced separation of uremic toxins along with enhanced hemocompatibility and biocompatibility that also promote the growth of kidney cells. The improvement arises from the addition of titanium dioxide (0.

View Article and Find Full Text PDF

Filter-aided extracellular vesicle enrichment (FAEVEr) for proteomics.

Mol Cell Proteomics

January 2025

VIB-UGent Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, 9052 Ghent, Belgium. Electronic address:

Extracellular vesicles (EVs), membrane-delimited nanovesicles that are secreted by cells into the extracellular environment, are gaining substantial interest due to their involvement in cellular homeostasis and their contribution to disease pathology. The latter in particular has led to an exponential increase in interest in EVs as they are considered to be circulating packages containing potential biomarkers and are also a possible biological means to deliver drugs in a cell-specific manner. However, several challenges hamper straightforward proteome analysis of EVs as they are generally low abundant and reside in complex biological matrices.

View Article and Find Full Text PDF

A Non-Centrifugation Method to Concentrate and Purify Extracellular Vesicles Using Superabsorbent Polymer Followed by Size Exclusion Chromatography.

J Extracell Vesicles

January 2025

Department of Internal Medicine and Clinical Nutrition, Krefting Research Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.

Extracellular vesicles (EVs) can be isolated and purified from cell cultures and biofluids using different methodologies. Here, we explored a novel EV isolation approach by combining superabsorbent polymers (SAP) in a dialysis membrane with size exclusion chromatography (SEC) to achieve high concentration and purity of EVs without the use of ultracentrifugation (UC). Suspension HEK293 cells transfected with CD63 coupled with Thermo Luciferase were used to quantify the EV yield and purity.

View Article and Find Full Text PDF

The role of membrane technology in palm oil mill effluent (POME) decontamination: Current trends and future prospects.

J Environ Manage

January 2025

Chemical Engineering Department, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia; Research Center for Biosciences and Biotechnology, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia.

This article reviews the role of membrane systems in treating palm oil mill effluent (POME), a waste generated by the palm industry. The review focuses on various membrane systems such as microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO), highlighting their effectiveness in removing pollutants and recovering water. Special attention is given to hybrid systems integrating membrane bioreactors (MBRs) and other advanced processes to enhance fouling control, improve water quality, and promote sustainability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!