There have been several trials to develop the bioactuator using skeletal muscle cells for controllable biobybird robot. However, due to the weak contraction force of muscle cells, the muscle cells could not be used for practical applications such as biorobotic hand for carrying objects, and actuator of biohybrid robot for toxicity test and drug screening. Based on reported hyaluronic acid-modified gold nanoparticles (HA@GNPs)-embedded muscle bundle on PDMS substrate, in this study for augmented actuation, we developed the electroactive nano-biohybrid actuator composed of the HA@GNP-embedded muscle bundle and molybdenum disulfide nanosheet (MoS NS)-modified electrode to enhance the motion performance. The MoS NS-modified Au-coated polyimide (PI) electrode to be worked in mild pH condition for viable muscle cell was utilized as supporting- and motion enhancing- substrate since it was electrochemically active, which caused the movement of flexible PI electrode. The motion performance of this electroactive nano-biohybrid actuator by electrical stimulation was increased about 3.18 times compared with that of only HA@GNPs embedded-muscle bundle on bare PI substrate. The proposed electroactive nano-biohybrid actuator can be applied to the biorobotic hand and biohybrid robot.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9133293PMC
http://dx.doi.org/10.1186/s40580-022-00316-8DOI Listing

Publication Analysis

Top Keywords

electroactive nano-biohybrid
16
nano-biohybrid actuator
16
muscle bundle
12
biohybrid robot
12
muscle cells
12
actuator composed
8
bundle molybdenum
8
molybdenum disulfide
8
electrode motion
8
biorobotic hand
8

Similar Publications

There have been several trials to develop the bioactuator using skeletal muscle cells for controllable biobybird robot. However, due to the weak contraction force of muscle cells, the muscle cells could not be used for practical applications such as biorobotic hand for carrying objects, and actuator of biohybrid robot for toxicity test and drug screening. Based on reported hyaluronic acid-modified gold nanoparticles (HA@GNPs)-embedded muscle bundle on PDMS substrate, in this study for augmented actuation, we developed the electroactive nano-biohybrid actuator composed of the HA@GNP-embedded muscle bundle and molybdenum disulfide nanosheet (MoS NS)-modified electrode to enhance the motion performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!