The survival of motor neuron (SMN) genes, SMN1 and SMN2, are two highly homologous genes related to spinal muscular atrophy (SMA). Different patterns of alternative splicing have been observed in the SMN genes. In this study, the long-read sequencing technique for distinguishing SMN1 and SMN2 without any assembly were developed and applied to reveal multiple alternative splicing patterns and to comprehensively identify transcript variants of the SMN genes. In total, 36 types of transcript variants were identified, with an equal number of variants generated from both SMN1 and SMN2. Of these, 18 were novel SMN transcripts that have never been reported. The structures of SMN transcripts were revealed to be much more complicated and diverse than previously discovered. These novel transcripts were derived from diverse splicing events, including skipping of one or more exons, intron retention, and exon shortening or addition. SMN1 mainly produces FL-SMN1, SMN1Δ7, SMN1Δ5 and SMN1Δ3. The distribution of SMN2 transcripts was significantly different from those of SMN1, with the majority transcripts to be SMN2Δ7, followed by FL-SMN2, SMN2Δ3,5 and SMN2Δ5,7. Targeted long-read sequencing approach could accurately distinguish sequences of SMN1 from those of SMN2. Our study comprehensively addressed naturally occurring SMN1 and SMN2 transcript variants and splicing patterns in peripheral blood mononuclear cells (PBMCs). The novel transcripts identified in our study expanded knowledge of the diversity of transcript variants generated from the SMN genes and showed a much more comprehensive profile of the SMN splicing spectrum. Results in our study will provide valuable information for the study of low expression level of SMN proteins and SMA pathogenesis based on transcript levels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00438-022-01874-6 | DOI Listing |
Brain Dev
January 2025
Department of Pediatrics, Aichi Medical University School of Medicine, Nagakute, Japan.
Background: Most cases of spinal muscular atrophy (SMA) can be diagnosed by copy number analysis of survival motor neuron (SMN) 1. However, a small number of cases of SMA can only be diagnosed by sequencing analysis. We present a case of SMA diagnosed 7 years after the onset of symptoms.
View Article and Find Full Text PDFInt J Neonatal Screen
January 2025
Cellular, Molecular and Genomics Biomedicine Group, La Fe Health Research Institute, 46026 Valencia, Spain.
Spinal muscular atrophy (SMA) is a degenerative neuromuscular condition resulting from a homozygous deletion of the survival motor neuron 1 () gene in 95% of patients. A timely diagnosis via newborn screening (NBS) and initiating treatment before the onset of symptoms are critical for improving health outcomes in affected individuals. We carried out a screening test by quantitative PCR (qPCR) to amplify the exon seven of using dried blood spot (DBS) samples.
View Article and Find Full Text PDFHum Mol Genet
January 2025
Centre for Discovery Brain Sciences, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom.
Spinal Muscular Atrophy is an autosomal dominant disease caused by mutations and deletions within the SMN1 gene, with predominantly childhood onset. Although primarily a motor neuron disease, defects in non-neuronal tissues are described in both patients and mouse models. Here, we have undertaken a detailed study of the heart in the Smn2B/- mouse models of SMA, and reveal a thinning of the ventriclar walls as previously described in more severe mouse models of SMA.
View Article and Find Full Text PDFFront Genet
December 2024
Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia.
Spinal muscular atrophy (SMA) is a progressive neuromuscular disorder caused by mutations in , with disease severity influenced by the number of copies. Although SMA is one of the most common autosomal recessive disorders, molecular diagnosis still presents challenges. We present a case series illustrating the variable clinical presentations and diagnostic complexities of spinal muscular atrophy (SMA).
View Article and Find Full Text PDFZh Nevrol Psikhiatr Im S S Korsakova
December 2024
JSC BIOCAD, St. Petersburg, Russia.
Spinal muscular atrophy (SMA) is a group of genetically heterogeneous neuromuscular diseases characterized by the progressive loss of motor neurons in the anterior horns of the spinal cord. The prevalence of SMA is approximately 1 in 10.000 live births.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!