A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Probing function in ligand-gated ion channels without measuring ion transport. | LitMetric

Probing function in ligand-gated ion channels without measuring ion transport.

J Gen Physiol

Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL.

Published: June 2022

Although the functional properties of ion channels are most accurately assessed using electrophysiological approaches, a number of experimental situations call for alternative methods. Here, working on members of the pentameric ligand-gated ion channel (pLGIC) superfamily, we focused on the practical implementation of, and the interpretation of results from, equilibrium-type ligand-binding assays. Ligand-binding studies of pLGICs are by no means new, but the lack of uniformity in published protocols, large disparities between the results obtained for a given parameter by different groups, and a general disregard for constraints placed on the experimental observations by simple theoretical considerations suggested that a thorough analysis of this classic technique was in order. To this end, we present a detailed practical and theoretical study of this type of assay using radiolabeled α-bungarotoxin, unlabeled small-molecule cholinergic ligands, the human homomeric α7-AChR, and extensive calculations in the framework of a realistic five-binding-site reaction scheme. Furthermore, we show examples of the practical application of this method to tackle two longstanding questions in the field: our results suggest that ligand-binding affinities are insensitive to binding-site occupancy and that mutations to amino-acid residues in the transmembrane domain are unlikely to affect the channel's affinities for ligands that bind to the extracellular domain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9136306PMC
http://dx.doi.org/10.1085/jgp.202213082DOI Listing

Publication Analysis

Top Keywords

ligand-gated ion
8
ion channels
8
probing function
4
function ligand-gated
4
ion
4
channels measuring
4
measuring ion
4
ion transport
4
transport functional
4
functional properties
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!