Banana (Musa spp.) is the second most-consumed fruit in Brazil, the fourth-largest producer globally, with 7 million tons in 2021 (IBGE 2021). Studies about the morphological and pathogenic characteristics revealed that the etiology of Fusarium wilt in banana cultivars in Brazil had been related to the Fusarium oxysporum f. sp. cubense (Foc) (E.F. Smith) Snyder and Hansen species (Costa et al. 2015; Cordeiro et al. 2016; Araújo et al. 2017). Phylogenetic studies have shown the existence of distinct genetic lineages for Foc, which has come to be called the Fusarium oxysporum Species Complex (FOSC) (O'Donnell et al. 1998; Maryani et al. 2019). Symptoms of Fusarium wilt were observed in banana trees at the headquarters of Embrapa Roraima (02°45'26.89"N and 60°43'52.78"W), Roraima-Brazil, in 2016. Samples were collected and sterilized with 70% ethanol for 30 s, followed by 3% NaClO for 1 min, rinsed three times in sterile distilled water, seeded on potato dextrose agar (PDA), and incubated at 25 °C for three days. Two isolates obtained from a pure culture (LPPC130) were submitted to the morphological characterization by Leslie and Summerell (2006) protocol. The fungal colony showed vinaceous color, progressing to livid red (Rayner 1970), with a mean diameter of 41 mm (± 0.1) at three days of incubation in a PDA culture medium. The fungus produced abundant macroconidia in spezieller nährstoffarmer agar (SNA) culture medium containing clove leaf (CLA) after 14 days of incubation at 25 °C. The sporodochium conidia presented a falcate shape, moderately curved, with 3 to 5 septa and dimensions ranging from 38.8 (48.0) 56.2 x 3.5 (4.4) 6.0 µm (n=50). The conidia of the aerial mycelium presented ovoid to ellipsoid shape, slightly curved, aseptic, measuring 6.0 (12.0) 18.0 x 2.8 (3.3) 5.0 µm (n=50). The genomic DNA of the isolate was extracted (Murray and Thompson 1980), and fragments of the elongation factor 1-α (TEF1) and RNA Polymerase II (RPB2) gene regions were amplified and sequenced in both directions (O'Donnell et al. 1998; O'Donnell et al. 2010) (GenBank accession numbers: Seq1 OL802918 and Seq2 OL802919). Multiple alignments of the combined dataset of the isolates and representative sequences obtained from GenBank were submitted to phylogenetic analysis with 1,000 bootstrap replicates. The micromorphological characteristics together to phylogenetic inference on the TEF1 and RPB2 genes, allowed a robust analysis, generating 42 more parsimonious trees and making it possible to identify the LPPC130 isolate as Fusarium kalimantanense, a species belonging to the F. oxysporum species complex (FOSC), with 100% bootstrap support (Maryani et al. 2019). The pathogenicity of the isolate was evaluated in five micropropagated seedlings of banana cv. Silk 75 days old, grown in pots with 5 kg of sterile formulation of sand and soil, in 1:1. Seedlings were inoculated by wounding the roots and depositing a suspension of conidia and chlamydospores at 105 spores mL-1. The inoculating of the isolate in 35 micropropagated seedlings of banana was based on Koch's postulates. The seedlings were transplanted into plastic bags (2 kg of sterile formulation: sandy soil and substrate, in 2:1) and inoculated with 10 mL of the chlamydospore suspension (107 CFU mL-1) at transplanting, and after 30 days of transplanting. Seedlings treated only with water were used as control. Evaluation of the symptoms of the disease was carried out 90 days after inoculation, and revealed that the isolate (LPPC130) was pathogenic by inducing the same symptoms of Fusarium wilt. F. kalimantanense was first reported associated with the pseudostems of Musa acuminata var. Pisang Ambon, and proved to be non-pathogenic to cv. Gros Michel and the bananas of the Cavendish group (Maryani et al. 2019). In Brazil, this fungus was recently associated with the Fusarium rot on melon fruits (Araújo et al. 2021); however, this is the first report of its pathogenicity in banana trees cv. Silk.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-05-22-1008-PDNDOI Listing

Publication Analysis

Top Keywords

fusarium wilt
16
maryani 2019
12
fusarium kalimantanense
8
fusarium
8
wilt banana
8
fusarium oxysporum
8
oxysporum species
8
species complex
8
complex fosc
8
o'donnell 1998
8

Similar Publications

wilt of banana is a major production constraint in India, prompting banana growers to replace bananas with less remunerative crops. Effective disease management practices thus need to be developed and implemented to prevent further spread and damage caused by f. sp.

View Article and Find Full Text PDF

Cucumber wilt disease, caused by f. sp. (FOC), is a major threat to cucumber production, especially in greenhouses.

View Article and Find Full Text PDF

Identification and Characterization of Endophytic Fungus DJE2023 Isolated from Banana ( sp. cv. Dajiao) with Potential for Biocontrol of Banana Fusarium Wilt.

J Fungi (Basel)

December 2024

Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.

This study characterized an endophytic fungus, DJE2023, isolated from healthy banana sucker of the cultivar (cv.) Dajiao. Its potential as a biocontrol agent against banana Fusarium wilt was assessed, aiming to provide a novel candidate strain for the biological control of the devastating disease.

View Article and Find Full Text PDF

Toward Marker-Assisted Selection in Breeding for Wilt Tropical Race-4 Type Resistant Bananas.

J Fungi (Basel)

December 2024

Embrapa Mandioca e Fruticultura, Rua Embrapa s/n CP 007, Bairro Chapadinha, Cruz das Almas 44380-000, Bahia, Brazil.

wilt is a soil borne fungal disease that has devastated banana production in plantations around the world. Most Cavendish-type bananas are susceptible to strains of f. sp.

View Article and Find Full Text PDF

Comprehensive Genomic and Proteomic Analysis Identifies Effectors of f. sp. .

J Fungi (Basel)

November 2024

Institute of Vegetable, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China.

wilt in eggplant caused by f. sp. is a major devastating soil-borne disease on a worldwide scale.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!