Mainstream smoke yields of hydrogen cyanide (HCN) and three aromatic amines, 1-aminonaphthalene, 2-aminonaphthalene, and 4-aminobiphenyl, from 60 little cigar brands currently on the US market were measured for both International Organization for Standardization (ISO) and Canadian Intense (CI) smoking regimens. The smoke yields are compared with those from 50 cigarette products measured by Counts et al. of Philip Morris USA (PMUSA) in 2005 [Counts et al. 2005 41, 185-227] and 50 cigarette products measured by the Centers for Disease Control and Prevention (CDC) in cooperation with the Food and Drug Administration (FDA) in 2012 [Tynan et al. Consumption of Cigarettes and Combustible Tobacco: United States, 2000-2011. In ; Centers for Disease Control and Prevention, 2012; 565-580]. For the little cigars, the average HCN yield with the ISO smoking regimen is 335 μg/cigar (range: 77-809 μg/cigar), which is 332% higher than the average of 50 PMUSA 2005 cigarettes and 243% higher than the average of 50 CDC/FDA 2012 cigarettes. For the CI smoking regimen, the average HCN yield is 619 μg/cigar (range: 464-1045 μg/cigar), which is 70.5% higher than the average of 50 PMUSA 2005 cigarettes and 69% higher than the average of the 50 CDC/FDA 2012 cigarettes. For aromatic amines, the average ISO smoking regimen smoke yields are 36.6 ng/cigar (range: 15.9-70.6 ng/cigar) for 1-aminonaphthalene, 24.6 ng/cigar (range: 12.3-36.7 ng/cigar) for 2-aminonaphthalene, and 5.6 ng/cigar (range: 2.3-17.2 ng/cigar) for 4-aminobiphenyl. The average ISO yields of aromatic amines from little cigars are 141% to 210% higher compared to the average yields of 50 PMUSA cigarettes. The average CI smoke regimen yields are 73.0 ng/cigar (range: 32.1-112.2 ng/cigar) for 1-aminonaphthalene, 45.2 ng/cigar (range: 24.6-74.8 ng/cigar) for 2-aminonaphthalene, and 12.7 ng/cigar (range: 5.5-37.5 ng/cigar) for 4-aminobiphenyl. The average CI aromatic amine yields are 143% to 220% higher compared to the average yields of 50 PMUSA cigarettes, almost identical to the relative yields under the ISO smoking regimen. Both HCN and aromatic amine yields are 1.5× to 3× higher for the tested little cigars than for the conventional cigarettes; however, there are notable differences in the relationships of these yields to certain product characteristics, such as weight, ventilation, and tobacco type. The higher smoke yields of these compounds from little cigars indicates that cigar smokers may be at risk of a higher exposure to HCN and aromatic amines on a per stick basis and thus increased health concerns.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.chemrestox.1c00330 | DOI Listing |
Chem Res Toxicol
June 2022
Centers for Disease Control and Prevention, National Center for Environmental Health, Division of Laboratory Sciences, Tobacco and Volatiles Branch, Atlanta, Georgia 30341, United States.
Mainstream smoke yields of hydrogen cyanide (HCN) and three aromatic amines, 1-aminonaphthalene, 2-aminonaphthalene, and 4-aminobiphenyl, from 60 little cigar brands currently on the US market were measured for both International Organization for Standardization (ISO) and Canadian Intense (CI) smoking regimens. The smoke yields are compared with those from 50 cigarette products measured by Counts et al. of Philip Morris USA (PMUSA) in 2005 [Counts et al.
View Article and Find Full Text PDFChem Res Toxicol
April 2021
Centers for Disease Control and Prevention, National Center for Environmental Health, Atlanta, Georgia 30341, United States.
Cigars are among the broad variety of tobacco products that have not been as extensively studied and characterized as cigarettes. Small cigars wrapped in a tobacco-containing sheet, commonly referred to as little cigars, are a subcategory that are similar to conventional cigarettes with respect to dimensions, filters, and overall appearance. Tobacco-specific nitrosamines (TSNAs) are carcinogens in the tobacco used in both little cigars and cigarettes.
View Article and Find Full Text PDFA simple, reproducible gas chromatography-thermal energy analyzer (g.c.-TEA) method has been developed for the analysis of N-nitrosodiethanolamine (NDELA) in tobacco and tobacco smoke.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!