Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We address the problem of semantic labeling of terms in two French medical corpora with the subset of the UMLS. We perform two experiments relying on the structure of words and terms, and on their context: 1) the semantic label of already identified terms is predicted; 2) the terms are detected in raw texts and their semantic label is predicted. Our results show over 0.90 F-measure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/SHTI220610 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!