A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Constructive Fuzzy Cognitive Map for Depression Severity Estimation. | LitMetric

Constructive Fuzzy Cognitive Map for Depression Severity Estimation.

Stud Health Technol Inform

Dept of Computer Science and Biomedical Informatics, Univ. of Thessaly, Greece.

Published: May 2022

Depression is a common and serious medical disorder that negatively affects the mood and the emotions of people, especially adolescents. In this paper, a novel framework for automatically creating Fuzzy Cognitive Maps (FCMs) is proposed. It is applied for the estimation of the severity of depression among adolescents, based on their electroencephalogram (EEG). The introduced Constructive FCM (CFCM) utilizes features extracted by a Constructive Fuzzy Representation Model (CFRM), which conduces to detect in a more intuitive way the cause-and-effect relationships between the brain activity and depression. CFCM contributes to limiting the participation of experts, and the manual interventions in the traditional construction of FCMs, it provides an embedded mechanism for dimensionality reduction, and it constitutes an inherently interpretable approach to decision making, while being uncertainty-aware and simple to implement. The results of the experiments, using a recent publicly available dataset, demonstrate the effectiveness of the proposed framework and highlight its advantages.

Download full-text PDF

Source
http://dx.doi.org/10.3233/SHTI220506DOI Listing

Publication Analysis

Top Keywords

constructive fuzzy
8
fuzzy cognitive
8
cognitive map
4
depression
4
map depression
4
depression severity
4
severity estimation
4
estimation depression
4
depression common
4
common serious
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!