Venous leg ulcers and diabetic foot ulcers are the most common chronic wounds. Their prevalence has been increasing significantly over the last years, consuming scarce care resources. This study aimed to explore the performance of detection and classification algorithms for these types of wounds in images. To this end, algorithms of the YoloV5 family of pre-trained models were applied to 885 images containing at least one of the two wound types. The YoloV5m6 model provided the highest precision (0.942) and a high recall value (0.837). Its mAP_0.5:0.95 was 0.642. While the latter value is comparable to the ones reported in the literature, precision and recall were considerably higher. In conclusion, our results on good wound detection and classification may reveal a path towards (semi-) automated entry of wound information in patient records. To strengthen the trust of clinicians, we are currently incorporating a dashboard where clinicians can check the validity of the predictions against their expertise.

Download full-text PDF

Source
http://dx.doi.org/10.3233/SHTI220397DOI Listing

Publication Analysis

Top Keywords

detection classification
12
wound detection
8
diabetic foot
8
venous leg
8
leg ulcers
8
image based
4
based object
4
object recognition
4
recognition system
4
wound
4

Similar Publications

Voice Quality as Digital Biomarker in Bipolar Disorder: A Systematic Review.

J Voice

January 2025

Department of Surgery, UMONS Research Institute for Health Sciences and Technology, University of Mons (UMons), Mons, Belgium; Division of Laryngology and Bronchoesophagology, Department of Otolaryngology Head Neck Surgery, EpiCURA Hospital, Baudour, Belgium; Department of Otolaryngology-Head and Neck Surgery, Foch Hospital, School of Medicine, UFR Simone Veil, Université Versailles Saint-Quentin-en-Yvelines (Paris Saclay University), Paris, France; Department of Otolaryngology, Elsan Hospital, Paris, France. Electronic address:

Background: Voice analysis has emerged as a potential biomarker for mood state detection and monitoring in bipolar disorder (BD). The systematic review aimed to summarize the evidence for voice analysis applications in BD, examining (1) the predictive validity of voice quality outcomes for mood state detection, and (2) the correlation between voice parameters and clinical symptom scales.

Methods: A PubMed, Scopus, and Cochrane Library search was carried out by two investigators for publications investigating voice quality in BD according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statements.

View Article and Find Full Text PDF

Automated ultrasonography of hepatocellular carcinoma using discrete wavelet transform based deep-learning neural network.

Med Image Anal

January 2025

Department of Electrical and Computer Engineering, College of Information and Communication Engineering, Sungkyunkwan University, Suwon, 440-746, South Korea. Electronic address:

This study introduces HCC-Net, a novel wavelet-based approach for the accurate diagnosis of hepatocellular carcinoma (HCC) from abdominal ultrasound (US) images using artificial neural networks. The HCC-Net integrates the discrete wavelet transform (DWT) to decompose US images into four sub-band images, a lesion detector for hierarchical lesion localization, and a pattern-augmented classifier for generating pattern-enhanced lesion images and subsequent classification. The lesion detection uses a hierarchical coarse-to-fine approach to minimize missed lesions.

View Article and Find Full Text PDF

Oral cancer is a major global health problem. It is commonly diagnosed at an advanced stage although often preceded by clinically visible oral mucosal lesions, termed oral potentially malignant disorders associated with an increased risk for oral cancer development. There is an unmet clinical need for effective screening tools to assist front-line healthcare providers to determine which patients should be referred to an oral cancer specialist for evaluation.

View Article and Find Full Text PDF

Fingermarks are important forensic evidence for identifying people. In this work, luminescent MOF [Eu(BDC)(HO)] (herein referred as EuBDC) was tested as a potential latent fingermark (LF) luminescent developer powder and its acute toxicity evaluated following OECD protocol 423. The results showed that the powder can develop groomed LF on materials such as leather, plastic, metal, glass, cardboard, and aluminum.

View Article and Find Full Text PDF

Background: Studies on the association between hematospermia and prostate cancer are insufficient. The purpose of this study was to determine the prevalence of prostate cancer in patients with hematospermia using large United States population data.

Materials And Methods: This was a retrospective observational cohort study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!