White light-emitting diodes (WLEDs) possess the advantages of environmental friendliness, long lifetime, and energy saving. Recently, metal-organic frameworks (MOFs) have become one of the hot candidates for LEDs. However, the tunable color and thermal stability of MOFs are urgent problems for their actual applications. In this work, Ln-MOFs (Ln = Eu, Tb) were synthesized by a facile wet chemical route. A series of Ln-MOFs phosphors with tunable luminescence color showed potential applications in white LEDs. The emission color of the phosphors can be easily modulated by changing the molar ratio of the raw materials. The luminescence intensities of Ln-MOFs retained over 90.6% of the initial value, showing excellent thermal stability of Ln-MOFs. In order to explore the potential applications of Ln-MOFs in WLEDs, we mixed them with two kinds of blue phosphors and packaged them to obtain WLEDs. The CIE coordinates of both were (0.31, 0.33) and (0.31, 0.34), which were able to achieve white light emission. The peak shape and peak position in the EL spectrum of the WLEDs device remained stable when increasing the applied current of the device. Meanwhile, the white light with excellent color quality and visual performance was achieved. The results show that Ln-MOFs are potential materials for white light LED, and provide a novel idea for the application of Ln-MOFs materials in the luminescence field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2dt00979j | DOI Listing |
Zookeys
January 2025
Steinhart Aquarium, California Academy of Sciences, San Francisco, CA 94118, USA.
Herein, we describe a new species of perchlet found at depths of 100-125 meters in mesophotic coral ecosystems of the Maldives in the Indian Ocean. is unique in both morphology and coloration. The following combination of characters distinguishes it from all known congeners: dorsal fin X, 15; anal-fin rays III, 7; pectoral-fin rays 13 | 13 (13 | 12), all unbranched; principal caudal-fin rays 9 + 8; lateral line complete with 30-32 tubed scales; gill rakers 5 + 12; circumpeduncular scales 11-12; and absence of antrorse or retrorse spines on ventral margin of preopercle.
View Article and Find Full Text PDFACS Cent Sci
January 2025
Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.
Photothermal conversion can promote plastic depolymerization (chemical recycling to a monomer) through light-to-heat conversion. The highly localized temperature gradient near the photothermal agent surface allows selective heating with spatial control not observed with bulk pyrolysis. However, identifying and incorporating practical photothermal agents into plastics for end-of-life depolymerization have not been realized.
View Article and Find Full Text PDFNat Phys
September 2024
School of Physics, Georgia Institute of Technology, Atlanta, GA, USA.
Bacteria often attach to surfaces and grow densely-packed communities called biofilms. As biofilms grow, they expand across the surface, increasing their surface area and access to nutrients. Thus, the overall growth rate of a biofilm is directly dependent on its "range expansion" rate.
View Article and Find Full Text PDFChem Asian J
January 2025
IISER Bhopal Department of Chemistry, Chemistry, Indore By-pass Road, Bhauri, 462066, Bhopal, INDIA.
White-light generation using small organic molecules has gained significant attention from researchers working on the interface of supramolecular chemistry and organic materials. Self-assembled multi-chromophoric materials utilizing a drug molecule and microenvironment-sensitive intramolecular charge transfer dye as an emitter offer the possibility of tunable emission. In this investigation, we focused on white light generation via the combination of a polarity-sensitive red-emitting styryl chromone (SC) and a blue-emitting anticancer and psychotherapeutic drug Norharmane (NHM) in a self-assembled micellar system.
View Article and Find Full Text PDFLife Sci Space Res (Amst)
February 2025
School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
A purple-pigmented (purple) rice seeds containing an anthocyanin, a major class of flavonoids, and their isogenic non-pigmented (white) seeds were exposed outside of the international space station (ISS) to evaluate the impact of anthocyanin on seed viability in space. The rice seeds were placed in sample plates at the exposed facility of ISS for 440 days, with the bottom layer seeds exposed to space radiation and the top layer seeds exposed to both solar light and space radiation. Though the seed weight of both purple and white seeds decreased after exposure to outer space, growth percentages after germination of purple and white seeds in the top layer were 55 and 15 %, respectively, compared to those in the bottom layer 100 and 70 %, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!