Background: Tobacco use in humans is a long-standing public health concern. Flavors are common additives in tobacco and alternative tobacco products, added to mask nicotine's harsh orosensory effects and increase the appeal of these products. Animal models are integral for investigating nicotine use and addiction and are helpful for understanding the effects of flavor additives on the use of nicotine delivery products.
Objective: This review focuses on preclinical models to evaluate the contribution of flavor additives to nicotine addiction.
Materials And Methods: An electronic literature search was conducted by authors up to May 2022. Original articles were selected.
Results: The behavioral models of rodents described here capture multiple dimensions of human flavored nicotine use behaviors, including advantages and disadvantages.
Conclusion: The consensus of the literature search was that human research on nicotine use behavior has not caught up with fast-changing product innovations, marketing practices, and federal regulations. Animal models are therefore needed to investigate mechanisms underlying nicotine use and addiction. This review provides a comprehensive overvie.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9886843 | PMC |
http://dx.doi.org/10.2174/1570159X20666220524120231 | DOI Listing |
Sci Adv
January 2025
Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
Particle elasticity has widely been established to substantially influence immune cell clearance and circulation time of vascular-targeted carriers (VTCs). However, prior studies have primarily investigated interactions with macrophages, monocytic cell lines, and in vivo murine models. Interactions between particles and human neutrophils remain largely unexplored, although they represent a critical aspect of VTC performance.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Cardiac Surgery, Peking University Third Hospital, Beijing 100191, China.
Following myocardial infarction (MI), the accumulation of CD86-positive macrophages in the ischemic injury zone leads to secondary myocardial damage. Precise pharmacological intervention targeting this process remains challenging. This study engineered a nanotherapeutic delivery system with CD86-positive macrophage-specific targeting and ultrasound-responsive release capabilities.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Developmental Epileptology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
Seizures elicited by corneal 6-Hz stimulation are widely acknowledged as a model of temporal lobe seizures. Despite the intensive research in rodents, no studies hint at this model in developing animals. We focused on seven age groups of both male and female rats.
View Article and Find Full Text PDFPLoS One
January 2025
Laboratório de Imunologia Celular (LIM-17), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.
Background: NETosis is recognized as an important source of autoantigens. Therefore, we hypothesized whether the pristane-induced lupus mice model shows early activation of neutrophils, the presence of low-density granulocytes (LDGs), and neutrophil extracellular traps (NETs) release, which could contribute to the development of a lupus phenotype.
Methods: Twelve female wild-type Balb/c mice were intraperitoneally injected with pristane (n = 6; pristane group) or saline (n = 6; control group).
PLoS One
January 2025
BioMarin Pharmaceutical Inc., Novato, CA, United States of America.
The GM2 gangliosidoses, Tay-Sachs disease and Sandhoff disease, are devastating neurodegenerative disorders caused by β-hexosaminidase A (HexA) deficiency. In the Sandhoff disease mouse model, rescue potential was severely reduced when HexA was introduced after disease onset. Here, we assess the effect of recombinant HexA and HexD3, a newly engineered mimetic of HexA optimized for the treatment of Tay-Sachs disease and Sandhoff disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!