With the continuously increasing demands of plastic products in the current society, the challenge of disposing plastic waste is constantly increasing, leading to the urgent need of mitigating plastic pollution. As a consequence, much attention has been paid to biodegradable plastics due to their degradability in a bio-active environment under certain conditions. Biodegradable plastics herald vast development potentials and considerable market prospects. The degradation of numerous types of biodegradable plastics will be affected by many factors. A thorough understanding of degradation mechanisms as well as functional microbial strains and enzymes is the key to comprehensive utilization and efficient treatment and disposal of biodegradable plastics. The article summarized the types, properties, advantages and disadvantages, and main applications of common biodegradable plastics. The degradation mechanisms, functional microbial strains and enzymes, as well as the degradation degree and duration under different environmental conditions, were also summarized. This review may help better understand the degradation of biodegradable plastics wastes.

Download full-text PDF

Source
http://dx.doi.org/10.13345/j.cjb.210731DOI Listing

Publication Analysis

Top Keywords

biodegradable plastics
28
degradation biodegradable
8
degradation mechanisms
8
functional microbial
8
microbial strains
8
strains enzymes
8
biodegradable
7
plastics
7
degradation
5
[advance degradation
4

Similar Publications

Biodegradable polylactic acid (PLA) mulch has been developed to replace conventional polyethylene (PE) mulch in agriculture to reduce plastic pollution and the accumulation of microplastics (MPs) in soil. Cadmium (Cd) is a significant soil contaminant, and can be adsorbed by MPs. It is increasingly recognised that in the natural environment biofilms can develop on MPs and that this can affect their adsorption properties.

View Article and Find Full Text PDF

Biodegradable plastics, primarily aliphatic polyesters, degrade to varying extents in different environments. However, the absence of easily implementable techniques for screening microbial biodegradation potential -coupled with the limitations of non-functional omics analyses- has restricted comparative studies across diverse polymer types and ecosystems. In this study, we optimized a novel airbrushing method that facilitates functional analyses by simplifying the preparation of polyester-coated plates for biodegradation screening.

View Article and Find Full Text PDF

Aqueous Solubility of Sodium and Chloride Salts of Glycine─"Uncommon" Common-Ion Effects of Self-Titrating Solids.

Mol Pharm

January 2025

Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York 11439, United States.

Although glycine is the simplest of the amino acids, its solution and solid-state properties are far from straightforward. The aqueous solubility of glycine plays an important role in various applications, including nutrition, food products, biodegradable plastics, and drug development. There is evidence that glycine in subsaturated pH 3-8 solutions forms a dimer, as suggested by several techniques.

View Article and Find Full Text PDF

Supramolecular modification of sustainable high-molar-mass polymers for improved processing and performance.

Nat Commun

January 2025

Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Materials, Laboratory of Macromolecular and Organic Materials, Lausanne, Switzerland.

The plastic waste crisis is among humanity's most urgent challenges. However, widespread adoption of sustainable plastics is hindered by their often inadequate processing characteristics and performance. Here, we introduce a bio-inspired strategy for the modification of a representative high molar mass, biodegradable aliphatic polyester that helps overcome these limitations and remains effective at molar masses far greater than the entanglement molar mass.

View Article and Find Full Text PDF
Article Synopsis
  • Polyhydroxyalkanoates (PHAs) are biodegradable plastics that can be produced through a mixed culture-based process, but ammonia nitrogen can hinder this production.
  • This study explores ways to efficiently reuse ammonia nitrogen to enhance PHA synthesis and reduce waste.
  • Results showed a significant increase in PHA production when using specific substrate and process conditions, while also effectively recycling ammonia without negatively affecting the mixed culture's properties.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!