With the continuously increasing demands of plastic products in the current society, the challenge of disposing plastic waste is constantly increasing, leading to the urgent need of mitigating plastic pollution. As a consequence, much attention has been paid to biodegradable plastics due to their degradability in a bio-active environment under certain conditions. Biodegradable plastics herald vast development potentials and considerable market prospects. The degradation of numerous types of biodegradable plastics will be affected by many factors. A thorough understanding of degradation mechanisms as well as functional microbial strains and enzymes is the key to comprehensive utilization and efficient treatment and disposal of biodegradable plastics. The article summarized the types, properties, advantages and disadvantages, and main applications of common biodegradable plastics. The degradation mechanisms, functional microbial strains and enzymes, as well as the degradation degree and duration under different environmental conditions, were also summarized. This review may help better understand the degradation of biodegradable plastics wastes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13345/j.cjb.210731 | DOI Listing |
Chemosphere
January 2025
Department of Environment and Geography, University of York, York, YO10 5NG, United Kingdom.
Biodegradable polylactic acid (PLA) mulch has been developed to replace conventional polyethylene (PE) mulch in agriculture to reduce plastic pollution and the accumulation of microplastics (MPs) in soil. Cadmium (Cd) is a significant soil contaminant, and can be adsorbed by MPs. It is increasingly recognised that in the natural environment biofilms can develop on MPs and that this can affect their adsorption properties.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Department of Biology, University of the Balearic Islands, Palma 07122, Spain. Electronic address:
Biodegradable plastics, primarily aliphatic polyesters, degrade to varying extents in different environments. However, the absence of easily implementable techniques for screening microbial biodegradation potential -coupled with the limitations of non-functional omics analyses- has restricted comparative studies across diverse polymer types and ecosystems. In this study, we optimized a novel airbrushing method that facilitates functional analyses by simplifying the preparation of polyester-coated plates for biodegradation screening.
View Article and Find Full Text PDFMol Pharm
January 2025
Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York 11439, United States.
Although glycine is the simplest of the amino acids, its solution and solid-state properties are far from straightforward. The aqueous solubility of glycine plays an important role in various applications, including nutrition, food products, biodegradable plastics, and drug development. There is evidence that glycine in subsaturated pH 3-8 solutions forms a dimer, as suggested by several techniques.
View Article and Find Full Text PDFNat Commun
January 2025
Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Materials, Laboratory of Macromolecular and Organic Materials, Lausanne, Switzerland.
The plastic waste crisis is among humanity's most urgent challenges. However, widespread adoption of sustainable plastics is hindered by their often inadequate processing characteristics and performance. Here, we introduce a bio-inspired strategy for the modification of a representative high molar mass, biodegradable aliphatic polyester that helps overcome these limitations and remains effective at molar masses far greater than the entanglement molar mass.
View Article and Find Full Text PDFBioresour Technol
December 2024
School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!