(CS), the leaves of S. Y. Hu., is an effective tea to prevent and treat hypertension in China. This study aimed to explore the effect and mechanism of CS in the protection against vascular remodeling in hypertension. Spontaneously hypertensive rats (SHRs) were orally administered with aqueous extracts of CS for 6 months. The blood pressure and morphological changes of the aorta were measured. Their mechanisms were studied by combining chemical identification, network pharmacology analysis and validation . Hypertensive rats showed an impaired vascular structure and dyslipidemia as illustrated by the increase of the vascular media thickness and collagen deposition in the aorta. CS treatment exhibited significant beneficial effects on blood pressure control and aortal morphology. A total of 21 compounds from CS were identified, which were linked to 106 corresponding targeted genes for vascular remodeling. The network pharmacology predicted that CS prevented vascular remodeling through the endoplasmic reticulum stress pathway. The experiments further showed that CS treatment upregulated Glucose-Regulated Protein 78 and downregulated CCAAT-enhancer-binding protein homologous protein at both mRNA and protein levels, paralleling reduced apoptotic cells in the arterial wall. Additionally, CS diminished the low-density lipoprotein cholesterol levels, total cholesterol contents and triglyceride/high-density lipoprotein cholesterol ratios in the sera of SHRs, which might also contribute to its protection of vessels. Collectively, CS protects against vascular modeling by suppressing endoplasmic reticulum stress-related apoptosis in hypertension, and it could be a potential agent for the prevention and treatment of vascular modeling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1fo04381a | DOI Listing |
Pharmaceutics
December 2024
Department of Urology and Department of Nuclear Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China.
Background/objectives: The purpose of this study was to develop the gemcitabine-loaded drug-eluting beads (G-DEBs) for transarterial chemoembolization (TACE) in rabbit renal tumors and to evaluate their antitumor effect using 2-deoxy-2-[(18)F]fluoro-D-glucose positron emission tomography/X-ray computed tomography (F-FDG PET/CT).
Methods: DEBs were prepared by polyvinyl alcohol-based macromer crosslinked with -acryl tyrosine and ,'-methylenebis(acrylamide). Gemcitabine was loaded through ion change to obtain G-DEBs.
Int J Mol Sci
December 2024
Pittsburgh Heart, Lung and Blood Vascular Medicine Institute (VMI), University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA.
Matrix metalloproteinase-2 (MMP-2), a zinc-dependent enzyme, plays a critical role in the degradation and remodeling of the extracellular matrix (ECM). As a member of the gelatinase subgroup of matrix metalloproteinases, MMP-2 is involved in a variety of physiological processes, including tissue repair, wound healing, angiogenesis, and embryogenesis. It is primarily responsible for the degradation of type IV and V collagen, fibronectin, laminin, and elastin, which are essential components of the ECM.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Pharmacology, Chonnam National University Medical School, Hwasun 58128, Republic of Korea.
Calcium deposition in vascular smooth muscle cells (VSMCs), a form of ectopic ossification in blood vessels, can result in rigidity of the vasculature and an increase in cardiac events. Here, we report that CCAAT/enhancer-binding protein beta (C/EBPβ) potentiates calcium deposition in VSMCs and mouse aorta induced by inorganic phosphate (Pi) or vitamin D. Based on cDNA microarray and RNA sequencing data of Pi-treated rat VSMCs, C/EBPβ was found to be upregulated and thus selected for further evaluation.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
Odorant receptors (ORs), which constitute approximately 50% of all human G protein-coupled receptors, are increasingly recognized for their diverse roles beyond odor perception, including functions in various pathological conditions like brain diseases and cancers. However, the roles of ORs in glioblastoma (GBM), the most aggressive primary brain tumor with a median survival of only 15 months, remain largely unexplored. Here, we performed an integrated transcriptomic analysis combining The Cancer Genome Atlas RNA-seq and single-cell RNA sequencing data from GBM patients to uncover cell-type-specific roles of ORs within the tumor and its microenvironment.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Physiology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01037 Dresden, Germany.
Endothelial dysfunction is a strong prognostic factor in predicting the development of cardiovascular diseases. Dysfunctional endothelium loses its homeostatic ability to regulate vascular tone and prevent overactivation of inflammation, leading to vascular dysfunction. These functions are critical for vascular homeostasis and arterial pressure control, the disruption of which may lead to hypertension.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!