White matter hyperintensities are common radiological findings in ageing and a typical manifestation of cerebral small vessel disease. White matter hyperintensity burden is evaluated by quantifying their volume; however, subtle changes in the white matter may not be captured by white matter hyperintensity volumetry. In this cross-sectional study, we investigated whether magnetic resonance imaging texture of both white matter hyperintensities and normal appearing white matter was associated with reaction time, white matter hyperintensity volume and dementia risk in a midlife cognitively normal population. Data from 183 cognitively healthy midlife adults from the PREVENT-Dementia study (mean age 51.9 ± 5.4; 70% females) were analysed. White matter hyperintensities were segmented from 3 Tesla fluid-attenuated inversion recovery scans using a semi-automated approach. The fluid-attenuated inversion recovery images were bias field corrected and textural features (intensity mean and standard deviation, contrast, energy, entropy, homogeneity) were calculated in white matter hyperintensities and normal appearing white matter based on generated textural maps. Textural features were analysed for associations with white matter hyperintensity volume, reaction time and the Cardiovascular Risk Factors, Aging and Dementia risk score using linear regression models adjusting for age and sex. The extent of normal appearing white matter surrounding white matter hyperintensities demonstrating similar textural associations to white matter hyperintensities was further investigated by defining layers surrounding white matter hyperintensities at increments of 0.86 mm thickness. Lower mean intensity within white matter hyperintensities was a significant predictor of longer reaction time ( = -3.77,  < 0.01). White matter hyperintensity volume was predicted by textural features within white matter hyperintensities and normal appearing white matter, albeit in opposite directions. A white matter area extending 2.5 - 3.5 mm further from the white matter hyperintensities demonstrated similar associations. White matter hyperintensity volume was not related to reaction time, although interaction analysis revealed that participants with high white matter hyperintensity burden and less homogeneous white matter hyperintensity texture demonstrated slower reaction time. Higher Cardiovascular Risk Factors, Aging, and Dementia score was associated with a heterogeneous normal appearing white matter intensity pattern. Overall, greater homogeneity within white matter hyperintensities and a more heterogeneous normal appearing white matter intensity profile were connected to a higher white matter hyperintensity burden, while heterogeneous intensity was related to prolonged reaction time (white matter hyperintensities of larger volume) and dementia risk (normal appearing white matter). Our results suggest that the quantified textural measures extracted from widely used clinical scans, might capture underlying microstructural damage and might be more sensitive to early pathological changes compared to white matter hyperintensity volumetry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9123845PMC
http://dx.doi.org/10.1093/braincomms/fcac116DOI Listing

Publication Analysis

Top Keywords

white matter
68
matter hyperintensities
32
white
17
matter
17
matter hyperintensity
16
fluid-attenuated inversion
12
inversion recovery
12
textural features
12
normal appearing
12
appearing white
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!