Structural Mechanism for Viscosity of Semiflexible Polymer Melts in Shear Flow.

ACS Macro Lett

State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China.

Published: April 2017

The viscosities of semiflexible polymers with different chain stiffnesses in shear flow are studied via nonequilibrium molecular dynamics techniques. The simulation reproduces the experimentally observed results, giving a complete picture of viscosity as chain stiffness increases. Analysis of flow-induced changes in chain conformation and local structure indicates two distinct mechanisms behind a variety of viscosity curves. For polymers of small stiffnesses, it is related to flow-induced changes in chain conformation and, for those of large stiffnesses, to flow-induced instabilities of nematic structures. The four-region flow curve is confirmed for polymers of contour length close to persistence length and understood by combining the two structural mechanisms. Thus, these findings clarify the microscopic structures indicated by the macroscopic viscosity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsmacrolett.6b00979DOI Listing

Publication Analysis

Top Keywords

shear flow
8
flow-induced changes
8
changes chain
8
chain conformation
8
stiffnesses flow-induced
8
structural mechanism
4
viscosity
4
mechanism viscosity
4
viscosity semiflexible
4
semiflexible polymer
4

Similar Publications

Capsules, which are potentially-active fluid droplets enclosed in a thin elastic membrane, experience large deformations when placed in suspension. The induced fluid-structure interaction stresses can potentially lead to rupture of the capsule membrane. While numerous experimental studies have focused on the rheological behavior of capsules until rupture, there remains a gap in understanding the evolution of their mechanical properties and the underlying mechanisms of damage and breakup under flow.

View Article and Find Full Text PDF

A Microflow Chip Technique for Monitoring Platelets in Late Pregnancy: A Possible Risk Factor for Thrombosis.

J Blood Med

January 2025

Department of Blood Transfusion of Yong-chuan Hospital, Chongqing Medical University, Chongqing, 402160, People's Republic of China.

Purpose: To study the platelet adhesion and aggregation behaviour of late pregnancy women under arterial shear rate using microfluidic chip technology and evaluate the risk of thrombosis in late pregnancy.

Methods: We included pregnant women who were registered in the obstetrics department of our hospital between January 2021 and October 2022 and underwent regular prenatal examinations. Blood samples were collected at 32-35 weeks of gestation for routine blood tests and progesterone, oestradiol, and platelet aggregation function.

View Article and Find Full Text PDF

As three-dimensional (3D) printing has emerged as a new manufacturing technology, the demand for high-performance 3D printable materials has increased to ensure broad applicability in various load-bearing structures. In particular, the thixotropic properties of materials, which allow them to flow under applied external forces but resist flowing otherwise, have been reported to enable rapid and high-resolution printing owing to their self-standing and easily processable characteristics. In this context, graphene nanosheets exhibit unique π-π stacking interactions between neighboring sheets, likely imparting self-standing capability to low-viscosity inks.

View Article and Find Full Text PDF

Quantitative investigation of a 3D bubble trapper in a high shear stress microfluidic chip using computational fluid dynamics and L*A*B* color space.

Biomed Microdevices

January 2025

Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 111 Suwannabhumi Canal Rd, Bang Pla, Bang Phli District, Samut Prakan, 10540, Thailand.

Microfluidic chips often face challenges related to the formation and accumulation of air bubbles, which can hinder their performance. This study investigated a bubble trapping mechanism integrated into microfluidic chip to address this issue. Microfluidic chip design includes a high shear stress section of fluid flow that can generate up to 2.

View Article and Find Full Text PDF

Objective: The study aims to elucidate the mechanisms underlying plaque growth by analyzing the variations in hemodynamic parameters within the plaque region of patients' carotid arteries before and after the development of atherosclerotic lesions.

Methods: The study enrolls 25 patients with common carotid artery stenosis and 25 with tandem carotid artery stenosis. Based on pathological analysis, three-dimensional models of the actual blood vessels before and after the lesion are constructed for two patients within a two-year period.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!