Fabrication of Multicomponent Multivesicular Peptidoliposomes and Their Directed Cytoplasmic Delivery.

ACS Macro Lett

Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seoul 03722, Korea.

Published: April 2017

A novel self-assembly strategy for the formation of multicomponent and multicompartment vesicles via the hierarchical assembly of the cyclic peptide and lipid building blocks is reported. The primary driving force underlying the formation of dual-component (i.e., peptide and lipid) heteromultivesicular vesicles (hMVVs) is the differential thermostability between the supramolecular building blocks. Furthermore, the combination of the differential thermostability and charge-based separation further enables the fabrication of the hMVVs that incorporate up to four different components (i.e., two different building blocks and two different encapsulated molecules). The quadruple-component hMVVs consist of cyclic peptides, lipids, negatively charged green fluorescent probes (GFPr), and positively charged red fluorescent probes (RFPr). Intracellular delivery study shows that cellular localization of hMVVs is directed by the function of hMVV envelopes, and the nuclear localization signal (NLS) of peptide vesicles appears to use different cellular pathways depending on the site of action (i.e., extracellular space or cytoplasm). This study provides the hierarchical peptide-based hMVVs with sophisticated architectures and cell delivery characteristics, thus making a step toward artificial cells or viruses.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsmacrolett.7b00064DOI Listing

Publication Analysis

Top Keywords

building blocks
12
peptide lipid
8
differential thermostability
8
fluorescent probes
8
hmvvs
5
fabrication multicomponent
4
multicomponent multivesicular
4
multivesicular peptidoliposomes
4
peptidoliposomes directed
4
directed cytoplasmic
4

Similar Publications

Camptothecin: a key building block in the design of anti-tumor agents.

Future Med Chem

January 2025

School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University, Yantai, China.

View Article and Find Full Text PDF

The deposition of monosodium urate (MSU) crystals within joint spaces produces a painful inflammatory condition known as gout, a specific form of arthritis. The condition calls for a combined curative and preventive management model. A new development in the approach to gout is that of NLRP3-targeted biologic agents, such as monoclonal therapies, to provide more accurate treatment by blocking specific pro-inflammatory cytokines.

View Article and Find Full Text PDF

Background: Food image recognition, a crucial step in computational gastronomy, has diverse applications across nutritional platforms. Convolutional neural networks (CNNs) are widely used for this task due to their ability to capture hierarchical features. However, they struggle with long-range dependencies and global feature extraction, which are vital in distinguishing visually similar foods or images where the context of the whole dish is crucial, thus necessitating transformer architecture.

View Article and Find Full Text PDF

The Role of Light Irradiation and Dendrimer Generation in Directing Electrostatic Self-Assembly.

Polymers (Basel)

January 2025

Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials, Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany.

pH-responsive polyamidoamine (PAMAM) dendrimers are used as well-defined building blocks to design light-switchable nano-assemblies in solution. The complex interplay between the photoresponsive di-anionic azo dye Acid Yellow 38 (AY38) and the cationic PAMAM dendrimers of different generations is presented in this study. Electrostatic self-assembly involving secondary dipole-dipole interactions provides well-defined assemblies within a broad size range (10 nm-1 μm) with various shapes.

View Article and Find Full Text PDF

Background: In the era of resistance, the design and search for new "small" molecules with a narrow spectrum of activity that target a protein or enzyme specific to a certain bacterium with high selectivity and minimal side effects remains an urgent problem of medicinal chemistry. In this regard, we developed and successfully implemented a strategy for the search for new hybrid molecules, namely, the not broadly known [2-(3-R-1-[1,2,4]-triazol-5-yl)phenyl]amines. They can act as "building blocks" and allow for the introduction of certain structural motifs into the desired final products in order to enhance the antistaphylococcal effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!