Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Context: Male exposure to environmental toxicants can disrupt spermatogenesis and sperm function. However, consequences of environmentally relevant organotin exposure to post-ejaculatory mammalian spermatozoa on fertility are poorly understood.
Aims: Determine the consequences of tributyltin chloride (TBT) exposure on post-ejaculatory sperm function and subsequent embryo development.
Methods: Frozen-thawed bovine sperm were exposed to TBT (0.1-100nM) for 90min (acute) and 6h (short-term) followed by quantification of multiple sperm kinematics via computer aided sperm analysis. JC-1 dye was used to measure mitochondrial membrane potential. Sperm were then exposed to TBT for 90min in non-capacitating conditions, washed several times by centrifugation and applied to gamete co-incubation for in vitro embryo production to the blastocyst stage.
Key Results: 100nM TBT decreased total motility (88 vs 79%), progressive motility (80 vs 70%) curvilinear velocity and beat-cross frequency for 90min with similar phenotypes at 6h (P <0.05). Sperm mitochondrial membrane potential was lower in 10 and 100nM groups after 6h (P ≤0.05). Embryos fertilised from TBT-exposed sperm had reduced cleavage rate (80 vs 62%) and 8-16 cell morula development (55 vs 24%) compared to development from unexposed sperm.
Conclusions: Exposure of post-ejaculatory mammalian sperm to TBT alters sperm function through lowered motility and mitochondrial membrane potential. Fertilisation of oocytes with TBT-exposed sperm reduces embryo development through mechanisms of paternal origin.
Implications: Acute and short-term environmental exposure of post-ejaculatory sperm to organotins and endocrine disrupting chemicals such as TBT contribute to idiopathic subfertility and early embryo loss.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1071/RD21371 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!