Circadian rhythms are daily oscillations in physiology and gene expression that are governed by a molecular feedback loop known as the circadian clock. In Drosophila melanogaster, the core clock consists of transcription factors clock (Clk) and cycle (cyc) which form protein heterodimers that activate transcription of their repressors, period (per) and timeless (tim). Once produced, protein heterodimers of per/tim repress Clk/cyc activity. One cycle of activation and repression takes approximately ("circa") 24-h ("diem") and repeats even in the absence of external stimuli. The circadian clock is active in many cells throughout the body; however, tracking it dynamically represents a challenge. Traditional fluorescent reporters are slowly degraded and consequently cannot be used to assess dynamic temporal changes exhibited by the circadian clock. The use of rapidly degraded fluorescent protein reporters containing destabilized GFP (dGFP) that report transcriptional activity in vivo at a single-cell level with ~1-h temporal resolution can circumvent this problem. Here we describe the use of circadian clock reporter strains of Drosophila melanogaster, Clock and Clock, to track clock transcriptional activity using the intestine as a tissue of interest. These methods may be extended to other tissues in the body.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-2249-0_24DOI Listing

Publication Analysis

Top Keywords

circadian clock
16
drosophila melanogaster
12
clock
9
fluorescent reporters
8
circadian rhythms
8
protein heterodimers
8
transcriptional activity
8
circadian
6
reporters studying
4
studying circadian
4

Similar Publications

The Effect of Sleep Disruption on Cardiometabolic Health.

Life (Basel)

January 2025

Sleep Medicine Institute, Jungwon University, Goesan-gun 28204, Chungcheongbuk-do, Republic of Korea.

Sleep disruption has emerged as a significant public health concern with profound implications for metabolic health. This review synthesizes current evidence demonstrating the intricate relationships between sleep disturbances and cardiometabolic dysfunction. Epidemiological studies have consistently demonstrated that insufficient sleep duration (<7 h) and poor sleep quality are associated with increased risks of obesity, type 2 diabetes, and cardiovascular disease.

View Article and Find Full Text PDF

The application of regenerative therapy through stem cell transplantation has emerged as a promising avenue for the treatment of diabetes mellitus (DM). Transplanted tissue homeostasis is affected by disturbances in the clock genes of stem cells. The aim of this study is to investigate the diurnal variation in mitochondrial genes and function after transplantation of adipose-derived mesenchymal stem cells (T2DM-ADSCs) from type 2 diabetic patients into immunodeficient mice.

View Article and Find Full Text PDF

Acute kidney injury (AKI) and chronic kidney disease (CKD) represent two frequently observed clinical conditions. AKI is characterized by an abrupt decrease in glomerular filtration rate (GFR), generally associated with elevated serum creatinine (sCr), blood urea nitrogen (BUN), and electrolyte imbalances. This condition usually persists for approximately a week, causing a transient reduction in kidney function.

View Article and Find Full Text PDF

Organisms have the capacity to detect day-night fluctuations through oscillators regulated by circadian clock genes, which are crucial for regulating various biological processes. Numerous studies have demonstrated a marked association between these genes and various growth traits of sheep. This study identified polymorphisms at 23 potential loci within five clock genes in four Chinese sheep breeds.

View Article and Find Full Text PDF

Background/objectives: This study evaluated changes in circadian clock genes and mitochondrial function in a lead (Pb)-induced toxicity model of an olfactory epithelial cell line.

Methods: The DBC1.2 olfactory dark basal cell line was used.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!