Three-point bending test, compression test and tensile test can detect the mechanical properties of the whole layer of skull, but cannot detect the mechanical properties of the inner plate, the diploe and the outer plate of the skull. In this study, nanoindentation technology was applied to detect mechanical properties of micro-materials of the skull, and differences in micro-mechanical properties of the inner, diploe and outer plates of the skull and cranial suture of human carcasses at different ages were analyzed. The differences in hardness (HIT) and modulus of elasticity (E) were statistically significant among different age groups (P < 0.01). In terms of structure, the E of diploe was higher than that of other structures, while HIT had no significant statistical difference. In terms of location, both HIT and E showed that left frontal (LF) was significantly higher than coronal suture (CS). The above results were consistent with the multi-factor ANOVAs. In addition, the multi-factor ANOVAs further explained the interaction of HIT and E with age, location and structure. It was believed that the nanoindentation technique could be used to analyze laws of micromechanical properties of different structures of human cadaveric skull and cranial suture.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9130296 | PMC |
http://dx.doi.org/10.1038/s41598-022-11216-6 | DOI Listing |
Int J Biol Macromol
January 2025
Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Food Security and Technology Center, Khalifa University of Science and Technology, P. O. Box 127788, Abu Dhabi, United Arab Emirates. Electronic address:
Packaging made of plastic harms the environment. Thus, polysaccharide edible films are becoming a popular food packaging solution. Alginate is a biopolymer derived from seaweed that has the potential to create food packaging materials that are environmentally friendly and biodegradable.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China. Electronic address:
Flexible smart sensing materials are gaining tremendous momentum in wearable and bionic smart electronics. To satisfy the growing demand for sustainability and eco-friendliness, biomass-based hydrogel sensors for green and biologically safe wearable sensors have attracted significant attention. In this work, we have prepared MCC/PAA/AgNWs/CNTs hydrogel sensors with excellent conductive sensing properties by a simple physical blending method.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia.
Nanotechnology involves the utilization of materials with exceptional properties at the nanoscale. Over the past few years, nanotechnologies have demonstrated significant potential in improving human health, particularly in medical treatments. The self-assembly characteristic of RNA is a highly effective method for designing and constructing nanostructures using a combination of biological, chemical, and physical techniques from different fields.
View Article and Find Full Text PDFJ Hand Ther
January 2025
Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Bitlis Eren University, Bitlis, Turkey; Department of Physical Therapy and Rehabilitation, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey.
Background: Quantifying the biomechanical properties of the thenar muscle can provide valuable insight into hand assessment methods.
Purpose: This study aimed to examine the reliability of myotonometer measurements in determining the biomechanical properties (tone, stiffness and elasticity) of thenar muscles in healthy individuals and explore sex-based variations. Additionally, it assessed the relationship between pinch strength and these properties.
Dev Cell
December 2024
Molecular Cellular and Developmental Biology (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31000 Toulouse, France. Electronic address:
Tumors evolve through the acquisition of increasingly aggressive traits associated with dysplasia. This progression is accompanied by alterations in tumor mechanical properties, especially through extracellular matrix remodeling. However, the contribution of pre-tumoral tissue mechanics to tumor aggressiveness remains poorly known in vivo.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!