The accuracy of navigation in minimally invasive neurosurgery is often challenged by deep brain deformations (up to 10 mm due to egress of cerebrospinal fluid during neuroendoscopic approach). We propose a deep learning-based deformable registration method to address such deformations between preoperative MR and intraoperative CBCT.The registration method uses a joint image synthesis and registration network (denoted JSR) to simultaneously synthesize MR and CBCT images to the CT domain and perform CT domain registration using a multi-resolution pyramid. JSR was first trained using a simulated dataset (simulated CBCT and simulated deformations) and then refined on real clinical images via transfer learning. The performance of the multi-resolution JSR was compared to a single-resolution architecture as well as a series of alternative registration methods (symmetric normalization (SyN), VoxelMorph, and image synthesis-based registration methods).JSR achieved median Dice coefficient (DSC) of 0.69 in deep brain structures and median target registration error (TRE) of 1.94 mm in the simulation dataset, with improvement from single-resolution architecture (median DSC = 0.68 and median TRE = 2.14 mm). Additionally, JSR achieved superior registration compared to alternative methods-e.g. SyN (median DSC = 0.54, median TRE = 2.77 mm), VoxelMorph (median DSC = 0.52, median TRE = 2.66 mm) and provided registration runtime of less than 3 s. Similarly in the clinical dataset, JSR achieved median DSC = 0.72 and median TRE = 2.05 mm.The multi-resolution JSR network resolved deep brain deformations between MR and CBCT images with performance superior to other state-of-the-art methods. The accuracy and runtime support translation of the method to further clinical studies in high-precision neurosurgery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9801422PMC
http://dx.doi.org/10.1088/1361-6560/ac72efDOI Listing

Publication Analysis

Top Keywords

deep brain
12
registration
11
median
10
synthesis registration
8
registration network
8
brain deformations
8
registration method
8
cbct images
8
multi-resolution jsr
8
single-resolution architecture
8

Similar Publications

Transformers for Neuroimage Segmentation: Scoping Review.

J Med Internet Res

January 2025

Department of Computer Science and Software Engineering, United Arab Emirates University, Al Ain, United Arab Emirates.

Background: Neuroimaging segmentation is increasingly important for diagnosing and planning treatments for neurological diseases. Manual segmentation is time-consuming, apart from being prone to human error and variability. Transformers are a promising deep learning approach for automated medical image segmentation.

View Article and Find Full Text PDF

This study aimed to investigate the genetic association between glioblastoma (GBM) and unsupervised deep learning-derived imaging phenotypes (UDIPs). We employed a combination of genome-wide association study (GWAS) data, single-nucleus RNA sequencing (snRNA-seq), and scPagwas (pathway-based polygenic regression framework) methods to explore the genetic links between UDIPs and GBM. Two-sample Mendelian randomization analyses were conducted to identify causal relationships between UDIPs and GBM.

View Article and Find Full Text PDF

Background: Stereotactic radiosurgery (SRS) is widely used for managing brain metastases (BMs), but an adverse effect, radionecrosis, complicates post-SRS management. Differentiating radionecrosis from tumor recurrence non-invasively remains a major clinical challenge, as conventional imaging techniques often necessitate surgical biopsy for accurate diagnosis. Machine learning and deep learning models have shown potential in distinguishing radionecrosis from tumor recurrence.

View Article and Find Full Text PDF

"Tardive syndrome" is an umbrella term for a group of drug-induced movement disorders associated with the prolonged use of mainly dopamine receptor blockers and also other medications. Early recognition followed by gradual withdrawal of the incriminating drug may lead to reversal, although not in all patients. Tardive syndromes are usually mixed movement disorders, with specific phenotypes, which may lead to severe disability.

View Article and Find Full Text PDF

Neurodevelopmental impairments associated with congenital heart disease (CHD) may arise from perturbations in brain developmental pathways, including the formation of sulcal patterns. While genetic factors contribute to sulcal features, the association of noncoding variants (ncDNVs) with sulcal patterns in people with CHD remains poorly understood. Leveraging deep learning models, we examined the predicted impact of ncDNVs on gene regulatory signals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!