Testosterone Influence on Microtubule-Associated Proteins and Spine Density in Hippocampus: Implications on Learning and Memory.

Dev Neurosci

Department of Anatomy, Dr. Arcot Lakshmanasamy Mudaliar Postgraduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, India.

Published: February 2023

AI Article Synopsis

  • The study explores how testosterone affects neuronal function and learning by examining castrated male rats and their performance in memory tasks.
  • Results showed that castration led to decreased levels of essential proteins linked to synaptic function and increased markers of dysfunction, while testosterone treatment improved these levels.
  • The findings emphasize the importance of androgen in maintaining synaptic plasticity in the hippocampus and suggest potential implications for understanding learning disabilities and neurological disorders.

Article Abstract

The thorny protrusions or spines increase the neuronal surface area, facilitate synaptic interconnections among neurons, and play an essential role in the hippocampus. Increasing evidence suggests that testosterone, the gonadal hormone, plays an important role in neurogenesis and synaptic plasticity. The role of testosterone on microtubule-associated proteins on dendritic neurite stability in the hippocampus and its impact on learning disability is not elucidated. Adult male Wistar albino rats were randomly selected for the control, castrated, castrated + testosterone, and control + testosterone groups. Bilateral orchidectomy was done, and the testosterone propionate was administered during the entire trial period, i.e., 14 days. The learning assessments were done using working/reference memory versions of the 8-arm radial maze and hippocampal tissues processed for histological and protein expressions. There were reduced expressions of microtubule-associated protein 2 (MAP2), postsynaptic density protein 95 (PSD95), and androgen receptor (AR) and increased expression of pTau in the castrated group. Conversely, the expression of MAP2, PSD95, and AR was increased, and the pTau expression was reduced in the hippocampus of the castrated rat administrated with testosterone. Androgen-depleted rats showed impaired synaptic plasticity in the hippocampus associated with contracted microtubule dynamics. Along with learning disability, there was an increased number of reference memory errors and working memory errors in castrated rats. Observations suggest that androgen regulates expression of neural tissue-specific MAPs and plays a vital role in hippocampus synaptic plasticity and that a similar mechanism may underlie neurological disorders in aging and hypogonadal men.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000525038DOI Listing

Publication Analysis

Top Keywords

synaptic plasticity
12
microtubule-associated proteins
8
role hippocampus
8
learning disability
8
memory errors
8
testosterone
7
hippocampus
6
castrated
5
testosterone influence
4
influence microtubule-associated
4

Similar Publications

Being part of a social structure offers chances for social learning vital for survival and reproduction. Nevertheless, studying the neural mechanisms of social learning under laboratory conditions remains challenging. To investigate the impact of socially transmitted information about rewards on individual behavior, we used Eco-HAB, an automated system monitoring the voluntary behavior of group-housed mice under seminaturalistic conditions.

View Article and Find Full Text PDF

Background: Heterogeneity in the progression of clinical dementia poses a significant challenge, impeding the effectiveness of current therapies for Alzheimer's disease (AD). To decipher the molecular mechanisms governing heterogeneity in AD progression that remains a critical knowledge gap precluding rational therapeutic design, we investigated the biochemical and biophysical properties of tau present in the inferior temporal gyrus (ITG) and prefrontal cortex (PFC) brain regions of AD patients who had varying disease progression rates. To explore gene expression changes in the ITG which are associated with tau pathology and cognitive decline, we used RNA sequencing for molecular characterization of patients displaying tau and clinical heterogeneity.

View Article and Find Full Text PDF

Background: Compelling evidence has shown that long non-coding RNAs (lncRNAs) contribute to Alzheimer's disease (AD) pathogenesis including β-amyloid plaque deposition (Aβ) and intracellular neurofibrillary tangles. In this study, we aimed to investigate the critical role of lncRNA Gm20063 in AD.

Method: Six-month-old male APP/PS1 transgenic mice and wild type (WT) C57BL/6 (B6) littermates were obtained from the Nanjing University Animal Model Research Center.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada.

Background: Soluble Aβ oligomers (AβOs) induce synapse dysfunction, leading to cognitive impairment and memory deficits in Alzheimer's disease (AD). Our laboratory and several research groups characterized neurexin family members' physiological roles, pivotal synaptic adhesion molecules for development, plasticity, and maintenance. Beyond their normal functions, we found neurexins binding to AβOs causes AβO-induced neurexin dysregulation.

View Article and Find Full Text PDF

Background: How tauopathy disrupts direct entorhinal cortex (EC) inputs to CA1 and their plasticity is understudied, despite its critical role in memory. Moreover, dysfunction of lateral EC (LEC) input is less clear, despite its relevance to early Alzheimer's disease pathogenesis. Here we examined how tau impacts long-term potentiation (LTP) of LEC→CA1 input in a transgenic model of tauopathy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!