A fast and simple Cas13a-based assay approach for direct detecting Ebola RNA in unamplified samples is reported. The procedure (named Cas-Roller) is comprised of a 10-min Cas13a-mediated cleavage protocol, followed by a DNA roller running for 30 min. This involves Cas13a collateral cleaving a suitably designed substrate in the presence of Ebola virus RNA sequence, and the cleavage product is used for DNA roller to amplify and generate fluorescent signals. After optimization of the conditions, the assay is able to achieve a limit of detection as low as 291 aM (∼175 copies RNA/μL) along with excellent anti-interfering performance in human serum and blood detection, which is ∼310-fold improved compared with the direct CRISPR assay. The entire workflow can be completed in ∼40 min at 37 °C without any pre-amplification, transcription, or centrifugation steps, thus avoiding the generation of false-negative or positive results. In addition, the downstream roller reaction is independent of the target sequence, this method can be applied to detect any other RNA by merely redesigning the hybridization regions of the crRNA. Overall, this strategy gives a new idea for the construction of simple and accurate Cas13a-based assays for the direct detection of RNA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2022.114393DOI Listing

Publication Analysis

Top Keywords

dna roller
12
ebola rna
8
rna unamplified
8
rna
5
rapid sensitive
4
detection
4
sensitive detection
4
detection ebola
4
unamplified sample
4
sample based
4

Similar Publications

Article Synopsis
  • The study investigates the use of cell-free DNA (cfDNA) from cerebrospinal fluid (CSF) as a less invasive alternative to brain biopsies for diagnosing brain tumors and addressing tumor heterogeneity.
  • A total of 33 CSF samples were collected from 30 patients, and shallow whole-genome sequencing was performed, revealing significant somatic copy number aberrations (SCNAs) in brain tumor patients' cfDNA.
  • The findings suggest that cfDNA analysis can effectively identify relevant genomic alterations, offering insights into tumor evolution and heterogeneity, thus enhancing diagnostic accuracy for CNS cancers.
View Article and Find Full Text PDF

The abundance of Lp(a) protein holds significant implications for the risk of cardiovascular disease (CVD), which is directly impacted by the copy number (CN) of KIV-2, a 5.5 kbp sub-region. KIV-2 is highly polymorphic in the population and accurate analysis is challenging.

View Article and Find Full Text PDF

Amplification-free nucleic acids detection with next-generation CRISPR/dx systems.

Crit Rev Biotechnol

September 2024

Department of Biology, College of Science, Shantou University, Shantou, Guangdong, China.

CRISPR-based diagnostics (CRISPR/Dx) have revolutionized the field of molecular diagnostics. It enables home self-test, field-deployable, and point-of-care testing (POCT). Despite the great potential of CRISPR/Dx in diagnoses of biologically complex diseases, preamplification of the template often is required for the sensitive detection of low-abundance nucleic acids.

View Article and Find Full Text PDF

The European Roller (Coracias garrulus), a long-distance migratory bird, faced a considerable decline in breeding pairs throughout Europe at the end of the 20th century. Due to conservation efforts and the installation of nesting boxes, the population of the European Roller in Serbia has made a remarkable recovery. Here, we used the variability of nucleotide sequences of the mitochondrial DNA (mtDNA) control region and 10 microsatellite loci to assess the genetic diversity and structuring, phylogeographic patterns and demographic history of this species using 224 individuals from Serbia.

View Article and Find Full Text PDF

Bionanosensor utilizing single-layer graphene for the detection of iridovirus.

J Mol Model

July 2024

Mechatronics Engineering Department, G.H. Patel College of Engineering & Technology, CVM University, Vallabh Vidyanagar, Gujarat, India.

Context: Iridoviruses, a group of double-stranded DNA viruses, pose a significant threat to various aquatic animals, causing substantial economic losses in aquaculture and impacting ecosystem health. Early and accurate detection of these viruses is crucial for effective disease management and control. Conventional diagnostic methods, including polymerase chain reaction (PCR) and virus isolation, often require specialized laboratories, skilled personnel, and considerable time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!