A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Efficient removal of micropollutants from low-conductance surface water using an electrochemical Janus ceramic membrane filtration system. | LitMetric

Efficient removal of micropollutants from low-conductance surface water using an electrochemical Janus ceramic membrane filtration system.

Water Res

School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, Tongji Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China. Electronic address:

Published: July 2022

Electrochemical membrane filtration (EMF) technology is effective to remove the micropollutant in the wastewater but its efficacy is drastically compromised in treating the surface water having a typically low conductivity. In this work, a Janus Fe-Pt electrochemical ceramic membrane (ECM) was fabricated by depositing a thin Fe layer on the side of a ceramic membrane facing feed (cathode) and Pt layer on the other side facing permeate (anode). The low Fe-Pt electrode distance (∼1 mm) ensured a decent conductance of the EMF system even in the low-salinity surface water and thereby maintained the removal efficiency of the micropollutant. It was identified that hydroxyl radicals (•OH) generated via anodic water oxidation and cathodic heterogenous Fenton process on bilateral sides of ECM were the dominant reactive oxygen species. The EMF system not only achieved 74% removal of atrazine (ATZ) from the low-conductance synthetic surface water with a low energy consumption (3.6 Wh per gATZ or 7.2 Wh m  ), but also realized a stable removal of ATZ from real surface water over a continuous filtration experiment of 168 h. The theoretical computations and experimental analysis identified the degradation pathway, i.e., the dechlorination and dealkylation of ATZ in the EMF system. This study highlights the great potential of the Janus ECM in removing micropollutants from low-conductance surface water and wastewater.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2022.118627DOI Listing

Publication Analysis

Top Keywords

surface water
24
ceramic membrane
12
emf system
12
micropollutants low-conductance
8
low-conductance surface
8
membrane filtration
8
layer side
8
water
7
surface
6
efficient removal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!