Nanocellulose are nano-sized components which are biodegradable, biocompatible and renewable. It offers mechanical strength and chemical stability in plants and bacteria. The environmental contamination is reduced by employing various bioremediation techniques which usesmicroorganisms like algae, bacteria and fungi as bio-adsorbents. The bio adsorbent property of nanocellulose contribute more for the bioremediation methods and the detailed study of its mechanism and application is essential which is discussed here. The mechanism happening between the contaminant and nanocellulose adsorbent should be explored in detail in order to develop effective new bioremediation strategies. Nanocellulose structural functionalization helps to modify the nanocellulose structure based on which it can be utilized for specific functions. Exploring the mechanisms that contribute to the implementation of nanocellulose in tissue engineering helps for further developments and advancement in the biomedical application of nanocellulose. Not much studies are available that elucidate and study the basic steps involved in the biomedical and environmental usage of nanocellulose. This review has focussed on the basic mechanisms involved in the use of nanocellulose in tissue engineering and bioremediation processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9275936PMC
http://dx.doi.org/10.1080/21655979.2022.2074739DOI Listing

Publication Analysis

Top Keywords

nanocellulose tissue
12
tissue engineering
12
nanocellulose
10
engineering bioremediation
8
bioremediation
5
bioremediation mechanism
4
mechanism action
4
action nanocellulose
4
nanocellulose nano-sized
4
nano-sized components
4

Similar Publications

Bacterial nanocellulose (BNC) has attracted considerable attention in the field of biomedical engineering due to its potential for use in bone regeneration applications. The present study investigates the in vitro and in vivo efficacy of bacterial nanocellulose (BNC) combined with calcium and cerium ions (BNC-Ce:CaP) in bone regeneration applications. XRD analysis confirmed the presence of monetite and hydroxyapatite phases in BNC-CaP, while BNC-Ce:CaP revealed an additional brushite phase.

View Article and Find Full Text PDF

Outstanding properties of nanocellulose provide opportunities for novel applications in various fields, particularly tissue engineering. Despite of numerous useful characteristics of nanocellulose, its production methods suffer from the lack of control of morphology, high cost, and the use of organic solvents. On the other hand, hydrophilicity of nanocellulose is a significant challenge for its dispersion as a reinforcement in hydrophobic polymers matrix.

View Article and Find Full Text PDF

Purpose: The present study aimed to evaluate and compare the effect of nanofibrillated cellulose (NFC)-based composite with dicalcium phosphate dihydrate and an autologous blood clot (ABC) on the formation of new bone tissue in vivo by histological and histomorphometric assessment.

Materials And Methods: A total of 72 rats with created femoral defects (2 mm) were used. The rats were divided into three groups: (1) with filling of the defect with an ABC, (2) NFC-1-with filling of both the cortical plate and intramedullary space in the defect area, and (3) NFC-2-with filling of only the intramedullary space in the defect area.

View Article and Find Full Text PDF

Melanoma is one of the most aggressive types of skin cancer, and the need for advanced platforms to study this disease and to develop new treatments is rising. 3D bioprinted tumor models are emerging as advanced tools to tackle these needs, with the design of adequate bioinks being a fundamental step to address this challenging process. Thus, this work explores the synergy between two biobased nanofibers, nanofibrillated cellulose (NFC) and lysozyme amyloid nanofibrils (LNFs), to create pectin nanocomposite hydrogel bioinks for the 3D bioprinting of A375 melanoma cell-laden living constructs.

View Article and Find Full Text PDF

Simultaneous processing of both handheld biomixing and biowriting of kombucha cultured pre-crosslinked nanocellulose bioink for regeneration of irregular and multi-layered tissue defects.

Int J Biol Macromol

December 2024

Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea; Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea. Electronic address:

The nanocellulosic pellicle derived from the symbiotic culture of bacteria and yeast (Kombucha SCOBY) is an important biomaterial for 3D bioprinting in tissue engineering. However, this nanocellulosic hydrogel has a highly entangled gel network. This needs to be partially modified to improve its processability and extrusion ability for its applications in the 3D bioprinting area.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!