Experimental and molecular dynamics studies on aggregation behaviour of salicylaldehyde azine ester.

Soft Matter

Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India.

Published: June 2022

Aggregation phenomena arise predominantly due to self-organisation of molecules to form supramolecular assemblies leading to restriction of intramolecular motions. In the present study, the solvent-induced aggregation of salicylaldehyde azine ester (SAE) was comprehensively investigated through experimental techniques, and classical molecular dynamics simulations (MDS). The emission spectra and particle sizes of SAE in THF-water mixtures confirmed the formation of nanoaggregates. The interaction of SAE aggregates with the solvent mixture was studied using Fourier-transform Infrared spectroscopy. The optical microscopy images and surface morphology analysis reinforced the nanoaggregate formation of SAE in solvent mixtures with increasing water fractions. The average number of H-bonds, diffusion coefficients and trajectory density contours of the aggregates were investigated through MDS studies, which provided atomistic perceptions into the formation of rod-like SAE nanoaggregates. The combined results of experimental and theoretical studies offer deeper insights into the self-aligning tendency of SAE in THF-water mixtures.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2sm00078dDOI Listing

Publication Analysis

Top Keywords

molecular dynamics
8
salicylaldehyde azine
8
azine ester
8
sae thf-water
8
thf-water mixtures
8
sae
6
experimental molecular
4
dynamics studies
4
studies aggregation
4
aggregation behaviour
4

Similar Publications

The p53 protein is regarded as the "Guardian of the Genome," but its mutation is tumor progression and present in more than half of malignant tumors. The pro-metastatic property of mutant p53 makes a strong argument for targeting mutant p53 with new therapeutic strategies. However, mutant p53 was considered as a challenging target for drug discovery due to the lack of small molecular binding pockets.

View Article and Find Full Text PDF

Cardiomyocytes (CMs) lost during ischemic cardiac injury cannot be replaced due to their limited proliferative capacity. Calcium is an important signal transducer that regulates key cellular processes, but its role in regulating CM proliferation is incompletely understood. Here we show a robust pathway for new calcium signaling-based cardiac regenerative strategies.

View Article and Find Full Text PDF
Article Synopsis
  • The red king crab and Japanese mitten crab are important for both their nutritional value and ecological research.
  • A study focused on the changes in lipid profiles during the crabs' embryonic and larval stages, highlighting how triacylglycerols disappeared in early larvae but reappeared later with different compositions.
  • The research revealed species-specific demands for polyunsaturated fatty acids, which could guide better diet selection in aquaculture practices.
View Article and Find Full Text PDF

The performance of Cu-exchanged chabazite (Cu-CHA) for the ammonia-assisted selective catalytic reduction of NO (NH-SCR) depends critically on the presence of paired complexes. Here, a machine-learning force field augmented with long-range Coulomb interactions is developed to investigate the effect of Al-distribution and Cu-loading on the mobility and pairing of complexes. Performing unbiased and constrained molecular dynamics simulations, we obtain unique information inaccessible to first-principle calculations and experiments.

View Article and Find Full Text PDF

Sequential addition of cations increases photoluminescence quantum yield of metal nanoclusters near unity.

Nat Commun

January 2025

State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, P. R. China.

Photoluminescence is one of the most intriguing properties of metal nanoclusters derived from their molecular-like electronic structure, however, achieving high photoluminescence quantum yield (PLQY) of metal core-dictated fluorescence remains a formidable challenge. Here, we report efficient suppression of the total structural vibrations and rotations, and management of the pathways and rates of the electron transfer dynamics to boost a near-unity absolute PLQY, by decorating progressive addition of cations. Specifically, with the sequential addition of Zn, Ag, and Tb into the 3-mercaptopropionic acids capped Au nanoclusters (NCs), the low-frequency vibration of the metal core progressively decreases from 144.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!