Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Gold, although chemically inert in its bulk state, is reactive at the nanoscale and, in small clusters, even behaves like a hydrogen atom. Using a photoelectron spectroscopy experiment and first-principles theory, we show that Au also behaves like a halogen in small clusters. This is evident not only in strong resemblance between the photoelectron spectra of AuF and AuF but also in Au exhibiting one of the signature properties of halogens, its ability to form superhalogens with electron affinities higher than that of any halogen atom. For example, the electron affinity (EA) of AuF is 4.17 eV, while AuF, a known superhalogen, has an EA of 4.47 eV. Of particular interest is AuF, which, in spite of being a closed-shell system, is a pseudohalogen with an EA of 3.3 ± 0.1 eV. Here, one of the Au atoms behaves like a halogen, making AuF mimic the property of AuF.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.2c00910 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!