Despite recent advances in cancer therapy, hard-to-reach, unidentified tumors remain a significant clinical challenge. A promising approach is to treat locatable and accessible tumors locally and stimulate antitumor immunity in situ to exert systemic effects against distant tumors. We hypothesize that a carrier of immunotherapeutics can play a critical role in activating antitumor immunity as an immunoadjuvant and a local retainer of drug combinations. Here, we develop a polyethyleneimine-lithocholic acid conjugate (2E′), which forms a hydrophobic core and cationic surface to codeliver hydrophobic small molecules and anionic nucleic acids and activates antigen-presenting cells via the intrinsic activities of 2E′ components. 2E′ delivers paclitaxel and small-interfering RNA (siRNA) targeting PD-L1 (or cyclic dinucleotide, [CDN]) to induce the immunogenic death of tumor cells and maintain the immunoactive tumor microenvironment, and further activates dendritic cells and macrophages, leveraging the activities of loaded drugs. A single local administration of 2E′ or its combination with paclitaxel and PD-L1–targeting siRNA or CDN induces strong antitumor immunity, resulting in immediate regression of large established tumors, tumor-free survival, an abscopal effect on distant tumors, and resistance to rechallenge and metastasis in multiple models of murine tumors, including CT26 colon carcinoma, B16F10 melanoma, and 4T1 breast cancer. This study supports the finding that local administration of immunotherapeutics, when accompanied by the rationally designed carrier, can effectively protect the host from distant and recurrent diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9295735 | PMC |
http://dx.doi.org/10.1073/pnas.2122595119 | DOI Listing |
Clin Transl Oncol
January 2025
Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510013, Guangdong, China.
Introduction: The transporter associated with antigen processing (TAP) is a key component of the classical HLA I antigen presentation pathway. Our previous studies have demonstrated that the downregulation of TAP1 contributes to tumor progression and is associated with an increased presence of myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment. However, it remains unclear whether the elevation of MDSCs leads to immune cell exhaustion in tumors lacking TAP1.
View Article and Find Full Text PDFBackground: Neuroblastoma is a heterogeneous disease with adrenergic (ADRN)- and therapy resistant mesenchymal (MES)-like cells driven by distinct transcription factor networks. Here, we investigate the expression of immunotherapeutic targets in each neuroblastoma subtype and propose pan-neuroblastoma and cell state specific targetable cell-surface proteins.
Methods: We characterized cell lines, patient-derived xenografts, and patient samples as ADRN-dominant or MES-dominant to define subtype-specific and pan-neuroblastoma gene sets.
Background: As a member of the tumor necrosis factor (TNF) superfamily, tumor necrosis factor superfamily member 4 (TNFSF4) is expressed on antigen-presenting cells and activated T cells by binding to its receptor TNFRSF4. However, tumorigenicity of TNFSF4 has not been studied in pan-cancer. Therefore, comprehensive bioinformatics analysis of pan-cancer was performed to determine the mechanisms through which TNFSF4 regulates tumorigenesis.
View Article and Find Full Text PDFHuman epidermal growth factor receptor 2 (HER2, also known as ERBB2) signaling promotes cell growth and differentiation, and is overexpressed in several tumor types, including breast, gastric and colorectal cancer. HER2-targeted therapies have shown clinical activity against these tumor types, resulting in regulatory approvals. However, the efficacy of HER2 therapies in tumors with HER2 mutations has not been widely investigated.
View Article and Find Full Text PDFJ Cancer Res Clin Oncol
January 2025
Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, 256600, P.R. China.
Purpose: Immune checkpoint blockades (ICBs) are promising, however they do not fit all types of tumor, such as those lack of tumor antigens. Induction of potent anti-tumor T cell immunity is critical for cancer therapy. In this study, we investigated the efficacy of immunotherapy via the immunogenic cell death (ICD) dying tumor cells in mouse models of lung metastasis and tumorigenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!