Fluorescence lifetime imaging is a valuable technique for probing characteristics of wide ranging samples and sensing of the molecular environment. However, the desire to measure faster and reduce effects such as photo bleaching in optical photon-count measurements for lifetime estimation lead to inevitable effects of convolution with the instrument response functions and noise, causing a degradation of the lifetime accuracy and precision. To tackle the problem, this paper presents a robust and computationally efficient framework for recovering fluorophore sample decay from the histogram of photon-count arrivals modelled as a decaying single-exponential function. In the proposed approach, the temporal histogram data is first decomposed into multiple bins via an adaptive multi-bin signal representation. Then, at each level of the multi-resolution temporal space, decay information including both the amplitude and the lifetime of a single-exponential function is rapidly decoded based on a novel statistical estimator. Ultimately, a game-theoretic model consisting of two players in an "amplitude-lifetime" game is constructed to be able to robustly recover optimal fluorescence decay signal from a set of fused multi-bin estimates. In addition to theoretical demonstrations, the efficiency of the proposed framework is experimentally shown on both synthesised and real data in different imaging circumstances. On a challenging low photon-count regime, our approach achieves about 28% improvement in bias than the best competing method. On real images, the proposed method processes data on average around 63 times faster than the gold standard least squares fit. Implementation codes are available to researchers.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBME.2022.3176224DOI Listing

Publication Analysis

Top Keywords

fluorescence lifetime
8
lifetime imaging
8
single-exponential function
8
lifetime
5
fast robust
4
robust single-exponential
4
decay
4
single-exponential decay
4
decay recovery
4
recovery noisy
4

Similar Publications

Fluorescent lifetimes of dissolved organic matter (DOM) and associated physicochemical parameters were measured over 14 months in an estuary in Southern California, USA. Measurements were made on 77 samples from sites near the inlet, mid-estuary, and outlet to maximize the range of physicochemical variables. Time-resolved fluorescence data were well fit to a triexponential model with an intermediate lifetime component (τ: 1 to 5 ns), a long lifetime component (τ: 2 to 15 ns), and a short lifetime component (τ: < 1 ns).

View Article and Find Full Text PDF

Mitochondrial endonuclease G (EndoG) contributes to chromosomal degradation when it is released from mitochondria during apoptosis. It is presumed to also have a mitochondrial function because EndoG deficiency causes mitochondrial dysfunction. However, the mechanism by which EndoG regulates mitochondrial function is not known.

View Article and Find Full Text PDF

Background: Human Apolipoprotein (APOE) has three isoforms, ε2, ε3, and ε4 among which ε4 (APOE4) confers the highest risk for late-onset Alzheimer's disease (AD). APOE4 is also the most prone to aggregate among APOE isoforms. Current evidence strongly suggests that APOE aggregation leads to neuronal dysfunction and eventually to AD.

View Article and Find Full Text PDF

Lipophilicity Modulation of Fluorescent Probes for Imaging of Cellular Microvesicle Dynamics.

J Am Chem Soc

January 2025

School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China.

Real-time monitoring of dynamic microvesicles (MVs), vesicles associated with living cells, is of great significance in deeply understanding their origin, transport, and function. However, specific labeling MVs poses a challenge due to the lack of unique biomarkers that differentiate them from other cellular compartments. Here, we present a strategy to selectively label MVs by evaluating a series of lipid layer-sensitive cationic indolium-coumarin fluorescent probes (designated as IC-C, with ranging from 1 to 18) that feature varying aliphatic side chains (CH).

View Article and Find Full Text PDF

Phasor-FSTM: a new paradigm for multicolor super-resolution imaging of living cells based on fluorescence modulation and lifetime multiplexing.

Light Sci Appl

January 2025

Center for Biomedical Optics and Photonics & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, China.

Multicolor microscopy and super-resolution optical microscopy are two widely used techniques that greatly enhance the ability to distinguish and resolve structures in cellular imaging. These methods have individually transformed cellular imaging by allowing detailed visualization of cellular and subcellular structures, as well as organelle interactions. However, integrating multicolor and super-resolution microscopy into a single method remains challenging due to issues like spectral overlap, crosstalk, photobleaching, phototoxicity, and technical complexity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!