Active exploratory behaviors have often been associated with theta oscillations in rodents, while theta oscillations during active exploration in non-human primates are still not well understood. We recorded neural activities in the frontal eye field (FEF) and V4 simultaneously when monkeys performed a free-gaze visual search task. Saccades were strongly phase-locked to theta oscillations of V4 and FEF local field potentials, and the phase-locking was dependent on saccade direction. The spiking probability of V4 and FEF units was significantly modulated by the theta phase in addition to the time-locked modulation associated with the evoked response. V4 and FEF units showed significantly stronger responses following saccades initiated at their preferred phases. Granger causality and ridge regression analysis showed modulatory effects of theta oscillations on saccade timing. Together, our study suggests phase-locking of saccades to the theta modulation of neural activity in visual and oculomotor cortical areas, in addition to the theta phase locking caused by saccade-triggered responses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9554076 | PMC |
http://dx.doi.org/10.1007/s12264-022-00884-z | DOI Listing |
Ann Neurosci
January 2025
National Resource Centre for Value Education in Engineering, Indian Institute of Technology, Delhi, India.
Background: Neural activity and subjective experiences indicate that breath-awareness practices, which focus on mindful observation of breath, promote tranquil calm and thoughtless awareness.
Purpose: This study explores the impact of tristage Ānāpānasati-based breath meditation on electroencephalography (EEG) oscillations and self-reported mindfulness states in novice meditators following a period of effortful cognition.
Methods: Eighty-nine novice meditators (82 males; Mean Age = 24.
Cell Rep
January 2025
Nash Family Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. Electronic address:
Temporal lobe epilepsy (TLE) causes pervasive and progressive memory impairments, yet the specific circuit changes that drive these deficits remain unclear. To investigate how hippocampal-entorhinal dysfunction contributes to progressive memory deficits in epilepsy, we performed simultaneous in vivo electrophysiology in the hippocampus (HPC) and medial entorhinal cortex (MEC) of control and epileptic mice 3 or 8 weeks after pilocarpine-induced status epilepticus (Pilo-SE). We found that HPC synchronization deficits (including reduced theta power, coherence, and altered interneuron spike timing) emerged within 3 weeks of Pilo-SE, aligning with early-onset, relatively subtle memory deficits.
View Article and Find Full Text PDFLang Cogn Neurosci
July 2024
Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, USA.
The engagement of predictive mechanisms during language comprehension can facilitate processing and modulate neural oscillatory activity. These modulations include alpha-band activity decreases prior to expected words, reflecting anticipatory preparation, and frontal theta-band activity following unexpected words, reflecting engagement of cognitive control. It remains unknown how these oscillatory dynamics are impacted by aging.
View Article and Find Full Text PDFFront Psychol
January 2025
Aix Marseille Univ, CNRS, CRPN, Marseille, France.
eNeuro
January 2025
Research School of Psychology, Australian National University, 0200, Australia.
Inner speech refers to the silent production of language in one's mind. As a purely mental action without obvious physical manifestations, inner speech has been notoriously difficult to quantify. Inner speech is thought to be closely related to overt speech.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!