Graphene, a two-dimensional single-layer carbon allotrope, has attracted tremendous scientific interest due to its outstanding physicochemical properties. Its monatomic thickness, high specific surface area, and chemical stability render it an ideal building block for the development of well-ordered layered nanostructures with tailored properties. Herein, biohybrid graphene-based layer-by-layer structures are prepared by means of conventional and surfactant-assisted Langmuir-Schaefer layer deposition techniques, whereby cytochrome c molecules are accommodated within ordered layers of graphene oxide. The biocatalytic activity of the as-developed nanobio-architectures toward the enzymatic oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt and decolorization of pinacyanol chloride is tested. The results show that the multilayer structures exhibit high biocatalytic activity and stability in the absence of surfactant molecules during the deposition of the monolayers.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c03944DOI Listing

Publication Analysis

Top Keywords

langmuir-schaefer layer
8
layer deposition
8
biocatalytic activity
8
graphene oxide-cytochrome
4
oxide-cytochrome multilayered
4
multilayered structures
4
structures biocatalytic
4
biocatalytic applications
4
applications decrypting
4
decrypting role
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!