Green manufacturing and reducing our cultural dependency on petrochemicals have been topics of growing interest in the past decade, particularly for three-dimensional (3D) printable photopolymers where often toxic solvents and reagents have been required. Here, a simple solvent-free, free-radical polymerization is utilized to homo- and copolymerize limonene and β-myrcene monomers to produce oligomeric photopolymers ( < 11 kDa) displaying Newtonian, low viscosities (∼10 Pa × s) suitable for thiol-ene photo-cross-linking, yielding photoset materials in a digital light processing (DLP)-type 3D printer. The resulting photosets display tunable thermomechanical properties (poly(limonene) displays elastic moduli exceeding 1 GPa) compared with previous works focusing on monomeric terpenes as well as four-dimensional (4D) shape memory behavior. The utility of such photopolymers for biomedical applications is briefly considered on the premise of the hydrophilic nature (measured by contact angle) as well as their cytocompatibility upon seeding films with macrophages. These terpene-derived, green 4D photopolymers are shown to have promising physical behaviors suitable for an array of manufacturing and 3D printing applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biomac.2c00085 | DOI Listing |
Innovation (Camb)
January 2025
AIM Center, College of Life Sciences and Technology, Beijing University of Chemical Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
Predicting free energy changes (ΔΔG) is essential for enhancing our understanding of protein evolution and plays a pivotal role in protein engineering and pharmaceutical development. While traditional methods offer valuable insights, they are often constrained by computational speed and reliance on biased training datasets. These constraints become particularly evident when aiming for accurate ΔΔG predictions across a diverse array of protein sequences.
View Article and Find Full Text PDFSci Rep
January 2025
General Surgery Department, Jiangsu University Affiliated People's Hospital, Zhenjiang, 212000, China.
Crohn's disease (CD) is a chronic inflammatory bowel disease with an unknown etiology. Ubiquitination plays a significant role in the pathogenesis of CD. This study aimed to explore the functional roles of ubiquitination-related genes in CD.
View Article and Find Full Text PDFLangmuir
January 2025
College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
A novel pH-responsive full-bio-based surfactant (Ca-S) containing a dynamic covalent bond is synthesized using renewable cashew phenol, 5-chloro-2-furanaldehyde, and taurine. The structure of Ca-S is characterized by Fourier transform infrared spectroscopy (FTIR) and H nuclear magnetic resonance (NMR) analysis. Limonene containing oil-in-water (O/W) microemulsions are prepared on the basis of the Ca-S surfactant and are applied to the remediation of oil-contaminated soil under low-energy conditions at ambient temperature.
View Article and Find Full Text PDFJ Food Sci Technol
February 2025
Department of GreenBio Science/Food Science and Technology, Gyeongsang National University, Jinju, 52725 Republic of Korea.
Physicochemical properties and flavor characteristics of hemp seeds (HS) were analyzed by roasting temperature (140 °C, 160 °C, 180 °C) and time (initial, 3, 6, 9, 12 min). HS with roasting showed a lightness () with increasing roasting time. Total flavonoid content (TFC) decreased significantly with roasting compared to initial, and total phenolic content (TPC) tended to decrease with increasing roasting time at low temperatures (140 °C), but relatively high temperatures (160 °C and 180 °C), TPC increased significantly with increasing roasting time.
View Article and Find Full Text PDFJ Sci Food Agric
January 2025
ISPAAM-CNR, Sassari, Italy.
Background: Biowaste accounts for about 40% of total waste. Food-industry waste is one major biowaste stream. The available technological approaches to biowaste treatment are expensive, not circular, unsustainable, and they require pre-treatments such as dehydration, extraction of inhibitors, pH correction, or the addition of other organic matrices.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!