Comparison of Quantitative Liver US and MRI in Patients with Liver Disease.

Radiology

From the Department of Radiology (V.P.V.A, J.R.D., J.A.T., P.S.B., A.T.T.) and Division of Gastroenterology, Hepatology and Nutrition (S.A.X.), Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Kasota Building MLC 5031, Cincinnati, OH 45226; and Departments of Radiology (J.R.D., A.T.T.) and Pediatrics (S.A.X., A.T.T.), University of Cincinnati College of Medicine, Cincinnati, Ohio.

Published: September 2022

Background Quantitative US techniques can be used to identify changes of liver disease, but data regarding their diagnostic performance and relationship to MRI measures are sparse. Purpose To define associations between quantitative US and MRI measures of the liver in children, adolescents, and young adults with liver disease and to define the predictive ability of quantitative US measures to detect abnormal liver stiffening and steatosis defined with MRI. Materials and Methods In this prospective study, consecutive patients aged 8-21 years and known to have or suspected of having liver disease and body mass index less than 35 kg/m underwent 1.5-T MRI and quantitative liver US during the same visit at a pediatric academic medical center between April 2018 and December 2020. Acquired US parameters included shear-wave speed (SWS) and attenuation coefficient, among others. US parameters were compared with liver MR elastography and liver MRI proton density fat fraction (PDFF). Pearson correlation, multiple logistic regression, and receiver operating characteristic curve analyses were performed to assess associations and determine the performance of US relative to that of MRI. Results A total of 44 study participants (mean age, 16 years ± 4 [SD]; age range, 8-21 years; 23 male participants) were evaluated. There was a positive correlation between US SWS and MR elastography stiffness ( = 0.73, < .001). US attenuation was positively correlated with MRI PDFF ( = 0.45, = .001). For the prediction of abnormal (>2.8 kPa) liver shear stiffness, SWS (1.56 m/sec [7.3 kPa] cutoff) had an area under the receiver operating characteristic curve (AUC) of 0.95 with 91% sensitivity (95% CI: 71, 99) (20 of 22 participants) and 95% specificity (95% CI: 76, 99) (20 of 21 participants). For the prediction of abnormal (>5%) liver PDFF, US attenuation (0.55 dB/cm/MHz cutoff) had an AUC of 0.75 with a sensitivity of 73% (95% CI: 39, 94) (eight of 11 participants) and a specificity of 73% (95% CI: 55, 86) (24 of 33 participants). Conclusion In children, adolescents, and young adults with known or suspected liver disease, there was moderate to high correlation between US shear-wave speed (SWS) and MR elastography-derived stiffness. US SWS predicted an abnormal liver shear stiffness with high performance. © RSNA, 2022 See also the editorial by Khanna and Alazraki in this issue.

Download full-text PDF

Source
http://dx.doi.org/10.1148/radiol.212995DOI Listing

Publication Analysis

Top Keywords

liver disease
20
95% participants
16
liver
14
quantitative liver
8
mri
8
liver mri
8
mri measures
8
children adolescents
8
adolescents young
8
young adults
8

Similar Publications

Erlotinib-induced Perioral Lesions Resembling Scleroderma.

Acta Dermatovenerol Croat

November 2024

Constantin A. Dasanu MD, PhD, Lucy Curci Cancer Center, Eisenhower Health, 39000 Bob Hope Dr, Rancho Mirage, CA 92270 , USA;

Erlotinib, an epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), is currently used in the therapy of several solid malignancies. This agent has been associated with several dermatological side-effects, the most common being papulo-pustular acneiform rash. Herein we describe a unique skin effect in a patient treated with erlotinib for non-small cell lung cancer.

View Article and Find Full Text PDF

Lanthanide-Assisted Function Tailoring of the HOF-Based Logic Gate Sensor Array for Biothiol Detection and Disease Discrimination.

Anal Chem

January 2025

Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.

The advancement of lanthanide fingerprint sensors characterized by targeted emission responses and low self-fluorescence interference for the detection of biothiols is of considerable importance for the early diagnosis and treatment of cancer. Herein, the lanthanide "personality function tailoring" HOF composite sensor array is designed for the specific discrimination of biothiols (GSH, Cys, and Hcy) based on the activation of various luminescent molecules, such as r-AuNCs/luminol via HOF surface proximity. Lumi-HOF@Ce serves as a versatile platform for catalyzing the oxidation of -phenylenediamine (OPD) to generate yellow fluorescent oligomers, accompanied by the fluorescence attenuation of luminol.

View Article and Find Full Text PDF

Non-alcoholic fatty liver disease (NAFLD) is the major cause of chronic liver disease worldwide, with no universally recognized effective treatments currently available. In recent years, ginseng and its principal active components, such as ginsenosides, have shown potential protective effects in the treatment of these liver diseases. In NAFLD, studies have demonstrated that ginseng can improve hepatic lipid metabolism, reduce inflammatory responses, and inhibit oxidative stress and fibrosis, thereby attenuating the progression of NAFLD.

View Article and Find Full Text PDF

Hepatic lipid accumulation, or Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD), is a significant risk factor for liver cancer. Despite the rising incidence of MASLD, the underlying mechanisms of steatosis and lipotoxicity remain poorly understood. Interestingly, lipid accumulation also occurs during fasting, driven by the mobilization of adipose tissue-derived fatty acids into the liver.

View Article and Find Full Text PDF

mRNA delivery offers new opportunities for disease treatment by directing cells to produce therapeutic proteins. However, designing highly stable mRNAs with programmable cell type-specificity remains a challenge. To address this, we measured the regulatory activity of 60,000 5' and 3' untranslated regions (UTRs) across six cell types and developed PARADE (Prediction And RAtional DEsign of mRNA UTRs), a generative AI framework to engineer untranslated RNA regions with tailored cell type-specific activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!