This work proposed a novel double-engine powered paper photoelectrochemical (PEC) biosensor based on an anode-cathode cooperative amplification strategy and various signal enhancement mechanisms, which realized the monitoring of multiple miRNAs (such as miRNA-141 and miRNA-21). Specifically, CN quantum dots (QDs) sensitized ZnO nanostars and BiOI nanospheres simultaneously to construct a composite photoelectric layer that amplified the original photocurrent of the photoanode and photocathode, respectively. Through the independent design and partition of a flexible paper chip to functionalize injection holes and electrode areas, the bipolar combination completed the secondary upgrade of signals, which also provided biological reaction sites for multitarget detection. With the synergistic participation of a three-dimensional (3D) DNA nanomachine and programmable CRISPR/Cas12a shearing tool, CN QDs lost their attachment away from the electrode surface to quench the signal. Moreover, electrode zoning significantly reduced the spatial cross talk of related substances for multitarget detection, while the universal trans-cleavage capability of CRISPR/Cas12a simplified the operation. The designed PEC biosensor revealed excellent linear ranges for detection of miRNA-141 and miRNA-21, for which the detection limits were 5.5 and 3.4 fM, respectively. With prominent selectivity and sensitivity, the platform established an effective approach for trace multitarget monitoring in clinical applications, and its numerous pioneering attempts owned favorable reference values.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.2c01717DOI Listing

Publication Analysis

Top Keywords

powered paper
8
paper photoelectrochemical
8
multiple mirnas
8
pec biosensor
8
mirna-141 mirna-21
8
multitarget detection
8
detection
5
dual-engine powered
4
photoelectrochemical platform
4
platform based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!