DNA G-quadruplexes (G4s) are key structures for the development of targeted anticancer therapies. In this context, ligands selectively interacting with G4s can represent valuable anticancer drugs. Aiming at speeding up the identification of G4-targeting synthetic or natural compounds, we developed an affinity chromatography-based assay, named G-quadruplex on Oligo Affinity Support (G4-OAS), by synthesizing G4-forming sequences on commercially available polystyrene OAS. Then, due to unspecific binding of several hydrophobic ligands on nude OAS, we moved to Controlled Pore Glass (CPG). We thus conceived an ad hoc functionalized, universal support on which both the on-support elongation and deprotection of the G4-forming oligonucleotides can be performed, along with the successive affinity chromatography-based assay, renamed as G-quadruplex on Controlled Pore Glass (G4-CPG) assay. Here we describe these assays and their applications to the screening of several libraries of chemically different putative G4 ligands. Finally, ongoing studies and outlook of our G4-CPG assay are reported.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9127747 | PMC |
http://dx.doi.org/10.1002/open.202200090 | DOI Listing |
Talanta
November 2024
Division of Abdominal Tumor Multimodality Treatment, Cancer Center, NHC Key Lab of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China; Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu, 610041, China; Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China. Electronic address:
Although non-immunoglobin scaffold binders with high affinity and broad spectrum for albumin are attractive for lab-scale albumin purification, affinity chromatography based on these binders has not been developed. Here, the albumin-binding capabilities of representative binders, including protein G-derived albumin binding domain (ABD), albumin binding nanofitins (ABNF), and human serum albumin affimer 31 (HSA31) were predicted by interaction structure analysis and verified by experimental assays. Interaction structure prediction suggested that ABD possessed great potential to bind human (HSA), rhesus monkey (RhSA), mouse (MSA), and rat serum albumin (RSA), whereas ABNF might only bind HSA and bovine serum albumin (BSA), and HSA31 might not bind any of the tested albumins.
View Article and Find Full Text PDFSci Rep
September 2024
Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Kirrberger Str., Building 46, 66421, Homburg, Germany.
Anal Chim Acta
June 2024
School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China. Electronic address:
Background: Microcystin-leucine-arginine (MC-LR) produced by various cyanobacteria during harmful algal bloom poses serious threats to drinking water safety and human health. Conventional chromatography-based detection methods require expensive instruments and complicated sample pretreatment, limiting their application for on-site detection. Colorimetric aptasensors are simple and rapid, and are amenable to fast detection.
View Article and Find Full Text PDFBioorg Chem
May 2024
BioCrom, Laboratório de Cromatografia de Bioafinidade e Química Ambiental, Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense (UFF), Niterói, Brazil. Electronic address:
Iran J Biotechnol
July 2023
Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Babol, 47138-18983, Mazandaran, Iran.
Background: Today, numerous antimicrobial and anticancer properties have been reported for plant lectins due to their ability to bind to carbohydrates. The agglutinin (UDA lectin) is a monomeric, small, and low molecular weight glycoprotein. It has attracted the attention of many researchers for identification, treatment, and other clinical purposes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!