Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objectives: Proposal of a risk analysis model to diminish negative impact on patient care by preanalytical errors in blood gas analysis (BGA).
Methods: Here we designed a Failure Mode and Effects Analysis (FMEA) risk assessment template for BGA, based on literature references and expertise of an international team of laboratory and clinical health care professionals.
Results: The FMEA identifies pre-analytical process steps, errors that may occur whilst performing BGA (potential failure mode), possible consequences (potential failure effect) and preventive/corrective actions (current controls). Probability of failure occurrence (OCC), severity of failure (SEV) and probability of failure detection (DET) are scored per potential failure mode. OCC and DET depend on test setting and patient population e.g., they differ in primary community health centres as compared to secondary community hospitals and third line university or specialized hospitals. OCC and DET also differ between stand-alone and networked instruments, manual and automated patient identification, and whether results are automatically transmitted to the patient's electronic health record. The risk priority number (RPN = SEV × OCC × DET) can be applied to determine the sequence in which risks are addressed. RPN can be recalculated after implementing changes to decrease OCC and/or increase DET. Key performance indicators are also proposed to evaluate changes.
Conclusions: This FMEA model will help health care professionals manage and minimize the risk of preanalytical errors in BGA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1515/cclm-2022-0319 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!