Tailings dams are large, often self-contained, storage facilities of mine residue. On self-contained tailings dams the tailings material itself is used to raise the containment embankments holding newly deposited residue. To develop the necessary strength, it is essential that material must dry out sufficiently. Despite substantial advancements in the field of instrumentation, these parameters are rarely measured on tailings dams and their evolution over time is poorly understood. Understanding the role of pore water suction and water content evolution over time can benefit from the installation of sensors and data acquisition systems (DAQ) capable of continuously monitoring these parameters. Such monitoring remains difficult and expensive owing to the challenges of measuring negative water pressures and the often-remote locations and harsh operating environments typical of mining operations. This paper describes the development, testing and validation of a low-cost DAQ for the measurement of the unsaturated pore pressure regime in a platinum tailings dam located in the Limpopo province of South Africa. The Tailings Dam DAQ (referred to as TD-DAQ) is designed to measure the negative pore pressure, moisture content and temperature in fine-grained material over extended periods of time. These measurements are stored on the DAQ and transmitted in parallel using new wireless network communications technologies (Sigfox) suited to remote, battery powered applications. The successful deployment of the TD-DAQ presents a real-time, low-cost instrumentation solution to improve the efficiency of condition monitoring of tailings storage facilities, contributing to a reduction in the probability of failure events.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9123461 | PMC |
http://dx.doi.org/10.1016/j.ohx.2021.e00221 | DOI Listing |
Sci Rep
December 2024
Department of Civil and Environmental Engineering, University of Brasília, Brasília, 70910-900, Brazil.
Given the complexity of the behavior of mining tailings dams built by the technique of hydraulic embankments and the recurring dam ruptures globally, especially in Brazil, ensuring enhanced safety through advanced disposal techniques becomes crucial. While the co-disposal method has been extensively explored for various mineral substances, a notable gap exists in the literature concerning its application specifically to tailings and waste rock generated from phosphate mining operations. This study aims to identify the optimal ratio for a mining tailings and waste rock mixture and evaluate its mechanical behavior in comparison to individual materials.
View Article and Find Full Text PDFSci Rep
November 2024
School of Engineering and Technology, China University of Geosciences (Beijing), Beijing, 100083, China.
Establishing strong seepage stability for tailings dams is crucial for ensuring their safety and mitigating the risk of failure. This study developed a three-dimensional seepage numerical model using finite element numerical computation for four different elevation conditions (5070 m, 5081 m, 5159 m, and 5213 m) encompassing the pond area and dam body. Seepage calculations were conducted under normal and flooding conditions, and the tailings pond's seepage stability was assessed for various stacking scenarios.
View Article and Find Full Text PDFEnviron Monit Assess
October 2024
State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing, 100084, China.
To solve the difficult problems of tailings dam instability and environmental pollution, multisource information perception, prediction and early warning technology for tailings dams are investigated. Taking a tailings pond in China as an example, a three-dimensional visualization intelligent management platform based on the spatiotemporal fusion of multisource big data is established to realize intelligent real-time monitoring, prediction and early warning of tailings dams. A monitoring system for air-space-ground integration was developed via high-resolution optical image recording, unmanned aerial vehicles (UAVs), radar, video surveillance and displacement sensors.
View Article and Find Full Text PDFEnviron Monit Assess
October 2024
Escuela Superior de Ingeniería, Universidad Autónoma de Coahuila, Blvd. Licenciado Adolfo López Mateos S/N, Nueva Rosita, Coahuila, México.
Environ Sci Pollut Res Int
September 2024
IBW-Institute of Hydro-Engineering of Polish Academy of Sciences, Kościerska 7, 80-328, Gdańsk, Poland.
Waste is the materials left over after the processing of ores. Significant disasters involving waste disposal structures have occurred in Brazil in recent years and caused severe damage by contaminating soil, rivers and coastal areas, destroying native fauna and flora, interrupting the water supply and compromising its potability, putting the population's health, livelihoods and economy at risk, as well as causing 289 irreparable human deaths. Regulatory laws have become stricter, and since 2019, after the tailings dam tragedies occurred in 2015 and 2019 in Mariana and Brumadinho, in Minas Gerais, the operation of upstream-raised tailings dams has been prohibited in Brazil.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!